ofe.v 41.1 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22 23 24

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
25
  | _ => progress simplify_eq/=
26 27 28 29
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32 33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36
Record OfeMixin A `{Equiv A, Dist A} := {
37
  mixin_equiv_dist x y : x  y   n, x {n} y;
38
  mixin_dist_equivalence n : Equivalence (dist n);
39
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41 42
}.

(** Bundeled version *)
43 44 45 46 47
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
48
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
49
}.
50 51 52 53 54 55 56 57 58
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
59 60

(** Lifting properties from the mixin *)
61 62
Section ofe_mixin.
  Context {A : ofeT}.
63
  Implicit Types x y : A.
64
  Lemma equiv_dist x y : x  y   n, x {n} y.
65
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
66
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
67
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
68
  Lemma dist_S n x y : x {S n} y  x {n} y.
69 70
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
71

Robbert Krebbers's avatar
Robbert Krebbers committed
72 73
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

74
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
75
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
76
   more sense. *)
77 78 79 80
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.

81 82 83 84 85 86 87 88 89 90
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

91
Program Definition chain_map {A B : ofeT} (f : A  B)
92
    `{!NonExpansive f} (c : chain A) : chain B :=
93 94 95
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

96 97 98 99 100 101
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
102

103
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c
104
      `(NonExpansive f) :
105 106 107
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
108 109
(** General properties *)
Section cofe.
110
  Context {A : ofeT}.
111
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113 114
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
115 116
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
117
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
  Qed.
119
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
120 121
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
122 123
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
124
  Qed.
125
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
126
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
128 129 130
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
131
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
132
  Proof. induction 2; eauto using dist_S. Qed.
133 134
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
135
  Instance ne_proper {B : ofeT} (f : A  B)
136
    `{!NonExpansive f} : Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
137
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
138
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
139
    `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
140 141 142
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
144
  Qed.
145

146
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
147 148 149 150
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
151 152
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
154
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156
End cofe.

157
(** Contractive functions *)
158 159 160 161 162 163 164 165
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
166

167
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
168 169
Proof. by intros n y1 y2. Qed.

170
Section contractive.
171
  Local Set Default Proof Using "Type*".
172 173 174 175
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
176
  Proof. by apply (_ : Contractive f). Qed.
177
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
178
  Proof. intros. by apply (_ : Contractive f). Qed.
179

180 181
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
182 183 184 185
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

186 187 188 189 190 191 192
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
193 194
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
195 196 197 198 199 200
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
201

Robbert Krebbers's avatar
Robbert Krebbers committed
202
(** Fixpoint *)
203
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
204
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
205
Next Obligation.
206
  intros A ? f ? n.
207
  induction n as [|n IH]=> -[|i] //= ?; try omega.
208 209
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
Qed.
211

212
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
213
  `{!Contractive f} : A := compl (fixpoint_chain f).
214 215 216
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
217 218

Section fixpoint.
219
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
220

221
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
222
  Proof.
223 224
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
225
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
226
  Qed.
227 228 229

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
230 231 232
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
233 234
  Qed.

235
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
236
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
237
  Proof.
238
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
239
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
240 241
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
242
  Qed.
243 244
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
245
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
246 247

  Lemma fixpoint_ind (P : A  Prop) :
248
    Proper (() ==> impl) P 
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
264 265
End fixpoint.

266 267 268
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
269

270
Section fixpointK.
271
  Local Set Default Proof Using "Type*".
272 273
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
  Context `{f_contractive : !Contractive (Nat.iter k f)}.
274
  (* TODO: Can we get rid of this assumption, derive it from contractivity? *)
275
  Context {f_ne : NonExpansive f}.
276 277 278

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
  Existing Instance f_proper.
279

280
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
281
  Proof.
282 283
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
284 285
  Qed.

286
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
287
  Proof.
288 289
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
290 291
  Qed.

292
  Section fixpointK_ne.
293
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
294
    Context {g_ne : NonExpansive g}.
295

296
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
297
    Proof.
298 299 300
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
301 302
    Qed.

303 304 305 306
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
End fixpointK.
307

Robbert Krebbers's avatar
Robbert Krebbers committed
308
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
309
Section fixpointAB.
310 311
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
353
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
354

Ralf Jung's avatar
Ralf Jung committed
355
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
387
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
388

389
(** Function space *)
390
(* We make [ofe_fun] a definition so that we can register it as a canonical
391
structure. *)
392
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
393

394 395 396 397 398
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
399 400 401 402 403 404 405 406 407 408
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
409
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
410

411 412 413 414 415 416 417 418 419
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
420
Notation "A -c> B" :=
421 422
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
423 424
  Inhabited (A -c> B) := populate (λ _, inhabitant).

425
(** Non-expansive function space *)
426 427
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
428
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
429 430
}.
Arguments CofeMor {_ _} _ {_}.
431 432
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
433

434 435 436 437
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

438 439 440 441 442 443 444
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
445 446
  Proof.
    split.
447
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
448
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
449
    - intros n; split.
450 451
      + by intros f x.
      + by intros f g ? x.
452
      + by intros f g h ?? x; trans (g x).
453
    - by intros n f g ? x; apply dist_S.
454
  Qed.
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
472

473 474 475
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
476 477 478
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
479
  Proof. done. Qed.
480
End ofe_mor.
481

482
Arguments ofe_morC : clear implicits.
483
Notation "A -n> B" :=
484 485
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
486
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
487

488
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
489 490
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
491
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
492
Instance: Params (@cconst) 2.
493

Robbert Krebbers's avatar
Robbert Krebbers committed
494 495 496 497 498
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
499
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
500
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
501

Ralf Jung's avatar
Ralf Jung committed
502
(* Function space maps *)
503
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
504
  (h : A -n> B) : A' -n> B' := g  h  f.
505 506
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
507
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
508

509 510
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
511 512
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
513
Proof.
514
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
515
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
516 517
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
518
(** unit *)
519 520
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
521
  Definition unit_ofe_mixin : OfeMixin unit.
522
  Proof. by repeat split; try exists 0. Qed.
523
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
524

525 526
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
527 528

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
529
  Proof. done. Qed.
530
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
531 532

(** Product *)
533
Section product.
534
  Context {A B : ofeT}.
535 536 537

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
538 539 540
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
541
  Definition prod_ofe_mixin : OfeMixin (A * B).
542 543
  Proof.
    split.
544
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
545
      rewrite !equiv_dist; naive_solver.
546 547
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
548
  Qed.
549 550 551 552 553 554 555 556 557
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

558 559 560
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
561 562
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
563 564 565 566 567
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

568
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
569 570 571 572 573
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
574 575 576
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
577

578 579
(** Functors *)
Structure cFunctor := CFunctor {
580
  cFunctor_car : ofeT  ofeT  ofeT;
581 582
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
583 584
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
585
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
586 587 588 589 590
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
591
Existing Instance cFunctor_ne.
592 593
Instance: Params (@cFunctor_map) 5.

594 595 596
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

597 598 599
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

600
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
601 602
Coercion cFunctor_diag : cFunctor >-> Funclass.

603
Program Definition constCF (B : ofeT) : cFunctor :=
604 605
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
606
Coercion constCF : ofeT >-> cFunctor.
607

608
Instance constCF_contractive B : cFunctorContractive (constCF B).
609
Proof. rewrite /cFunctorContractive; apply _. Qed.
610 611 612 613

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
614
Notation "∙" := idCF : cFunctor_scope.
615

616 617 618 619 620
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
621 622 623
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
624 625 626 627 628
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
629
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
630

631 632 633 634 635 636 637 638
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

639 640 641
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') :
  NonExpansive (compose f : (A -c> B)  A -c> B').
Proof. intros n g g' Hf x; simpl. by rewrite (Hf x). Qed.
642

643
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
644
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
645 646 647
Instance ofe_funC_map_ne {A B B'} :
  NonExpansive (@ofe_funC_map A B B').
Proof. intros n f f' Hf g x. apply Hf. Qed.
648

649 650 651
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
652 653
|}.
Next Obligation.
654
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
655 656 657 658 659 660
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
661
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
662

663 664
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
665 666
Proof.
  intros ?? A1 A2 B1 B2 n ???;
667
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
668 669
Qed.

670
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
671
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
672
  cFunctor_map A1 A2 B1 B2 fg :=
673
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
674
|}.
675 676
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
677
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
678
Qed.
Ralf Jung's avatar
Ralf Jung committed
679
Next Obligation.
680 681
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
682 683
Qed.
Next Obligation.
684 685
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
686
Qed.
687
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
688

689
Instance ofe_morCF_contractive F1 F2 :
690
  cFunctorContractive F1  cFunctorContractive F2 
691
  cFunctorContractive (ofe_morCF F1 F2).
692 693
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
694
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
695 696
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
697 698
(** Sum *)
Section sum.
699
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
700 701

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
702 703
  Global Instance inl_ne : NonExpansive (@inl A B) := _.
  Global Instance inr_ne : NonExpansive (@inr A B) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
704 705 706
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

707 708 709 710 711 712 713 714 715 716 717 718
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
719 720
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
721
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
722 723 724
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

725
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
726 727 728 729
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
730 731 732 733 734 735 736
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
737 738 739 740 741 742 743 744 745 746 747 748 749
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

750
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
751 752 753 754 755 756 757
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f