list.v 161 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1 2 3 4
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects general purpose definitions and theorems on lists that
are not in the Coq standard library. *)
5
From Coq Require Export Permutation.
6
From iris.prelude Require Export numbers base option.
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10

Arguments length {_} _.
Arguments cons {_} _ _.
Arguments app {_} _ _.
11 12 13 14

Instance: Params (@length) 1.
Instance: Params (@cons) 1.
Instance: Params (@app) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
15 16 17 18 19

Notation tail := tl.
Notation take := firstn.
Notation drop := skipn.

20
Arguments tail {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
21 22 23
Arguments take {_} !_ !_ /.
Arguments drop {_} !_ !_ /.

24 25 26 27 28 29
Instance: Params (@tail) 1.
Instance: Params (@take) 1.
Instance: Params (@drop) 1.

Arguments Permutation {_} _ _.
Arguments Forall_cons {_} _ _ _ _ _.
30
Remove Hints Permutation_cons : typeclass_instances.
31

Robbert Krebbers's avatar
Robbert Krebbers committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Notation "(::)" := cons (only parsing) : C_scope.
Notation "( x ::)" := (cons x) (only parsing) : C_scope.
Notation "(:: l )" := (λ x, cons x l) (only parsing) : C_scope.
Notation "(++)" := app (only parsing) : C_scope.
Notation "( l ++)" := (app l) (only parsing) : C_scope.
Notation "(++ k )" := (λ l, app l k) (only parsing) : C_scope.

Infix "≡ₚ" := Permutation (at level 70, no associativity) : C_scope.
Notation "(≡ₚ)" := Permutation (only parsing) : C_scope.
Notation "( x ≡ₚ)" := (Permutation x) (only parsing) : C_scope.
Notation "(≡ₚ x )" := (λ y, y ≡ₚ x) (only parsing) : C_scope.
Notation "(≢ₚ)" := (λ x y, ¬x ≡ₚ y) (only parsing) : C_scope.
Notation "x ≢ₚ y":= (¬x ≡ₚ y) (at level 70, no associativity) : C_scope.
Notation "( x ≢ₚ)" := (λ y, x ≢ₚ y) (only parsing) : C_scope.
Notation "(≢ₚ x )" := (λ y, y ≢ₚ x) (only parsing) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
48 49 50
Instance maybe_cons {A} : Maybe2 (@cons A) := λ l,
  match l with x :: l => Some (x,l) | _ => None end.

Robbert Krebbers's avatar
Robbert Krebbers committed
51
(** * Definitions *)
52 53 54 55 56 57
(** Setoid equality lifted to lists *)
Inductive list_equiv `{Equiv A} : Equiv (list A) :=
  | nil_equiv : [] ≡ []
  | cons_equiv x y l k : x ≡ y → l ≡ k → x :: l ≡ y :: k.
Existing Instance list_equiv.

Robbert Krebbers's avatar
Robbert Krebbers committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
(** The operation [l !! i] gives the [i]th element of the list [l], or [None]
in case [i] is out of bounds. *)
Instance list_lookup {A} : Lookup nat A (list A) :=
  fix go i l {struct l} : option A := let _ : Lookup _ _ _ := @go in
  match l with
  | [] => None | x :: l => match i with 0 => Some x | S i => l !! i end
  end.

(** The operation [alter f i l] applies the function [f] to the [i]th element
of [l]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_alter {A} : Alter nat A (list A) := λ f,
  fix go i l {struct l} :=
  match l with
  | [] => []
  | x :: l => match i with 0 => f x :: l | S i => x :: go i l end
  end.

(** The operation [<[i:=x]> l] overwrites the element at position [i] with the
value [x]. In case [i] is out of bounds, the list is returned unchanged. *)
Instance list_insert {A} : Insert nat A (list A) :=
  fix go i y l {struct l} := let _ : Insert _ _ _ := @go in
  match l with
  | [] => []
  | x :: l => match i with 0 => y :: l | S i => x :: <[i:=y]>l end
  end.
Fixpoint list_inserts {A} (i : nat) (k l : list A) : list A :=
  match k with
  | [] => l
  | y :: k => <[i:=y]>(list_inserts (S i) k l)
  end.
88
Instance: Params (@list_inserts) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
89 90 91 92 93 94 95 96 97 98 99 100 101 102

(** The operation [delete i l] removes the [i]th element of [l] and moves
all consecutive elements one position ahead. In case [i] is out of bounds,
the list is returned unchanged. *)
Instance list_delete {A} : Delete nat (list A) :=
  fix go (i : nat) (l : list A) {struct l} : list A :=
  match l with
  | [] => []
  | x :: l => match i with 0 => l | S i => x :: @delete _ _ go i l end
  end.

(** The function [option_list o] converts an element [Some x] into the
singleton list [[x]], and [None] into the empty list [[]]. *)
Definition option_list {A} : option A → list A := option_rect _ (λ x, [x]) [].
103 104
Instance: Params (@option_list) 1.
Instance maybe_list_singleton {A} : Maybe (λ x : A, [x]) := λ l,
Robbert Krebbers's avatar
Robbert Krebbers committed
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  match l with [x] => Some x | _ => None end.

(** The function [filter P l] returns the list of elements of [l] that
satisfies [P]. The order remains unchanged. *)
Instance list_filter {A} : Filter A (list A) :=
  fix go P _ l := let _ : Filter _ _ := @go in
  match l with
  | [] => []
  | x :: l => if decide (P x) then x :: filter P l else filter P l
  end.

(** The function [list_find P l] returns the first index [i] whose element
satisfies the predicate [P]. *)
Definition list_find {A} P `{∀ x, Decision (P x)} : list A → option (nat * A) :=
  fix go l :=
  match l with
  | [] => None
  | x :: l => if decide (P x) then Some (0,x) else prod_map S id <$> go l
  end.
124
Instance: Params (@list_find) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
125 126 127 128 129

(** The function [replicate n x] generates a list with length [n] of elements
with value [x]. *)
Fixpoint replicate {A} (n : nat) (x : A) : list A :=
  match n with 0 => [] | S n => x :: replicate n x end.
130
Instance: Params (@replicate) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
131 132 133

(** The function [reverse l] returns the elements of [l] in reverse order. *)
Definition reverse {A} (l : list A) : list A := rev_append l [].
134
Instance: Params (@reverse) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
135 136 137 138 139

(** The function [last l] returns the last element of the list [l], or [None]
if the list [l] is empty. *)
Fixpoint last {A} (l : list A) : option A :=
  match l with [] => None | [x] => Some x | _ :: l => last l end.
140
Instance: Params (@last) 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
141 142 143 144 145 146 147 148 149 150

(** The function [resize n y l] takes the first [n] elements of [l] in case
[length l ≤ n], and otherwise appends elements with value [x] to [l] to obtain
a list of length [n]. *)
Fixpoint resize {A} (n : nat) (y : A) (l : list A) : list A :=
  match l with
  | [] => replicate n y
  | x :: l => match n with 0 => [] | S n => x :: resize n y l end
  end.
Arguments resize {_} !_ _ !_.
151
Instance: Params (@resize) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
152 153 154 155 156 157 158 159

(** The function [reshape k l] transforms [l] into a list of lists whose sizes
are specified by [k]. In case [l] is too short, the resulting list will be
padded with empty lists. In case [l] is too long, it will be truncated. *)
Fixpoint reshape {A} (szs : list nat) (l : list A) : list (list A) :=
  match szs with
  | [] => [] | sz :: szs => take sz l :: reshape szs (drop sz l)
  end.
160
Instance: Params (@reshape) 2.
Robbert Krebbers's avatar
Robbert Krebbers committed
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198

Definition sublist_lookup {A} (i n : nat) (l : list A) : option (list A) :=
  guard (i + n ≤ length l); Some (take n (drop i l)).
Definition sublist_alter {A} (f : list A → list A)
    (i n : nat) (l : list A) : list A :=
  take i l ++ f (take n (drop i l)) ++ drop (i + n) l.

(** Functions to fold over a list. We redefine [foldl] with the arguments in
the same order as in Haskell. *)
Notation foldr := fold_right.
Definition foldl {A B} (f : A → B → A) : A → list B → A :=
  fix go a l := match l with [] => a | x :: l => go (f a x) l end.

(** The monadic operations. *)
Instance list_ret: MRet list := λ A x, x :: @nil A.
Instance list_fmap : FMap list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x :: go l end.
Instance list_omap : OMap list := λ A B f,
  fix go (l : list A) :=
  match l with
  | [] => []
  | x :: l => match f x with Some y => y :: go l | None => go l end
  end.
Instance list_bind : MBind list := λ A B f,
  fix go (l : list A) := match l with [] => [] | x :: l => f x ++ go l end.
Instance list_join: MJoin list :=
  fix go A (ls : list (list A)) : list A :=
  match ls with [] => [] | l :: ls => l ++ @mjoin _ go _ ls end.
Definition mapM `{MBind M, MRet M} {A B} (f : A → M B) : list A → M (list B) :=
  fix go l :=
  match l with [] => mret [] | x :: l => y ← f x; k ← go l; mret (y :: k) end.

(** We define stronger variants of map and fold that allow the mapped
function to use the index of the elements. *)
Definition imap_go {A B} (f : nat → A → B) : nat → list A → list B :=
  fix go (n : nat) (l : list A) :=
  match l with [] => [] | x :: l => f n x :: go (S n) l end.
Definition imap {A B} (f : nat → A → B) : list A → list B := imap_go f 0.
199 200
Arguments imap : simpl never.

Robbert Krebbers's avatar
Robbert Krebbers committed
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
Definition zipped_map {A B} (f : list A → list A → A → B) :
  list A → list A → list B := fix go l k :=
  match k with [] => [] | x :: k => f l k x :: go (x :: l) k end.

Definition imap2_go {A B C} (f : nat → A → B → C) :
    nat → list A → list B → list C:=
  fix go (n : nat) (l : list A) (k : list B) :=
  match l, k with
  | [], _ |_, [] => [] | x :: l, y :: k => f n x y :: go (S n) l k
  end.
Definition imap2 {A B C} (f : nat → A → B → C) :
  list A → list B → list C := imap2_go f 0.

Inductive zipped_Forall {A} (P : list A → list A → A → Prop) :
    list A → list A → Prop :=
  | zipped_Forall_nil l : zipped_Forall P l []
  | zipped_Forall_cons l k x :
     P l k x → zipped_Forall P (x :: l) k → zipped_Forall P l (x :: k).
Arguments zipped_Forall_nil {_ _} _.
Arguments zipped_Forall_cons {_ _} _ _ _ _ _.

(** The function [mask f βs l] applies the function [f] to elements in [l] at
positions that are [true] in [βs]. *)
Fixpoint mask {A} (f : A → A) (βs : list bool) (l : list A) : list A :=
  match βs, l with
  | β :: βs, x :: l => (if β then f x else x) :: mask f βs l
  | _, _ => l
  end.

(** The function [permutations l] yields all permutations of [l]. *)
Fixpoint interleave {A} (x : A) (l : list A) : list (list A) :=
  match l with
  | [] => [[x]]| y :: l => (x :: y :: l) :: ((y ::) <$> interleave x l)
  end.
Fixpoint permutations {A} (l : list A) : list (list A) :=
  match l with [] => [[]] | x :: l => permutations l ≫= interleave x end.

(** The predicate [suffix_of] holds if the first list is a suffix of the second.
The predicate [prefix_of] holds if the first list is a prefix of the second. *)
Definition suffix_of {A} : relation (list A) := λ l1 l2, ∃ k, l2 = k ++ l1.
Definition prefix_of {A} : relation (list A) := λ l1 l2, ∃ k, l2 = l1 ++ k.
Infix "`suffix_of`" := suffix_of (at level 70) : C_scope.
Infix "`prefix_of`" := prefix_of (at level 70) : C_scope.
244 245
Hint Extern 0 (_ `prefix_of` _) => reflexivity.
Hint Extern 0 (_ `suffix_of` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
246 247

Section prefix_suffix_ops.
248 249
  Context `{EqDecision A}.

Robbert Krebbers's avatar
Robbert Krebbers committed
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
  Definition max_prefix_of : list A → list A → list A * list A * list A :=
    fix go l1 l2 :=
    match l1, l2 with
    | [], l2 => ([], l2, [])
    | l1, [] => (l1, [], [])
    | x1 :: l1, x2 :: l2 =>
      if decide_rel (=) x1 x2
      then prod_map id (x1 ::) (go l1 l2) else (x1 :: l1, x2 :: l2, [])
    end.
  Definition max_suffix_of (l1 l2 : list A) : list A * list A * list A :=
    match max_prefix_of (reverse l1) (reverse l2) with
    | (k1, k2, k3) => (reverse k1, reverse k2, reverse k3)
    end.
  Definition strip_prefix (l1 l2 : list A) := (max_prefix_of l1 l2).1.2.
  Definition strip_suffix (l1 l2 : list A) := (max_suffix_of l1 l2).1.2.
End prefix_suffix_ops.

(** A list [l1] is a sublist of [l2] if [l2] is obtained by removing elements
from [l1] without changing the order. *)
Inductive sublist {A} : relation (list A) :=
  | sublist_nil : sublist [] []
  | sublist_skip x l1 l2 : sublist l1 l2 → sublist (x :: l1) (x :: l2)
  | sublist_cons x l1 l2 : sublist l1 l2 → sublist l1 (x :: l2).
Infix "`sublist`" := sublist (at level 70) : C_scope.
274
Hint Extern 0 (_ `sublist` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
275 276 277 278 279 280 281 282 283 284

(** A list [l2] contains a list [l1] if [l2] is obtained by removing elements
from [l1] while possiblity changing the order. *)
Inductive contains {A} : relation (list A) :=
  | contains_nil : contains [] []
  | contains_skip x l1 l2 : contains l1 l2 → contains (x :: l1) (x :: l2)
  | contains_swap x y l : contains (y :: x :: l) (x :: y :: l)
  | contains_cons x l1 l2 : contains l1 l2 → contains l1 (x :: l2)
  | contains_trans l1 l2 l3 : contains l1 l2 → contains l2 l3 → contains l1 l3.
Infix "`contains`" := contains (at level 70) : C_scope.
285
Hint Extern 0 (_ `contains` _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
286 287

Section contains_dec_help.
288
  Context `{EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  Fixpoint list_remove (x : A) (l : list A) : option (list A) :=
    match l with
    | [] => None
    | y :: l => if decide (x = y) then Some l else (y ::) <$> list_remove x l
    end.
  Fixpoint list_remove_list (k : list A) (l : list A) : option (list A) :=
    match k with
    | [] => Some l | x :: k => list_remove x l ≫= list_remove_list k
    end.
End contains_dec_help.

Inductive Forall3 {A B C} (P : A → B → C → Prop) :
     list A → list B → list C → Prop :=
  | Forall3_nil : Forall3 P [] [] []
  | Forall3_cons x y z l k k' :
     P x y z → Forall3 P l k k' → Forall3 P (x :: l) (y :: k) (z :: k').

306 307
(** Set operations on lists *)
Instance list_subseteq {A} : SubsetEq (list A) := λ l1 l2, ∀ x, x ∈ l1 → x ∈ l2.
308

Robbert Krebbers's avatar
Robbert Krebbers committed
309
Section list_set.
310 311
  Context `{dec : EqDecision A}.
  Global Instance elem_of_list_dec (x : A) : ∀ l, Decision (x ∈ l).
Robbert Krebbers's avatar
Robbert Krebbers committed
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
  Proof.
   refine (
    fix go l :=
    match l return Decision (x ∈ l) with
    | [] => right _
    | y :: l => cast_if_or (decide (x = y)) (go l)
    end); clear go dec; subst; try (by constructor); abstract by inversion 1.
  Defined.
  Fixpoint remove_dups (l : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x l then remove_dups l else x :: remove_dups l
    end.
  Fixpoint list_difference (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
      then list_difference l k else x :: list_difference l k
    end.
  Definition list_union (l k : list A) : list A := list_difference l k ++ k.
  Fixpoint list_intersection (l k : list A) : list A :=
    match l with
    | [] => []
    | x :: l =>
      if decide_rel (∈) x k
      then x :: list_intersection l k else list_intersection l k
    end.
  Definition list_intersection_with (f : A → A → option A) :
    list A → list A → list A := fix go l k :=
    match l with
    | [] => []
    | x :: l => foldr (λ y,
        match f x y with None => id | Some z => (z ::) end) (go l k) k
    end.
End list_set.

(** * Basic tactics on lists *)
351
(** The tactic [discriminate_list] discharges a goal if it contains
Robbert Krebbers's avatar
Robbert Krebbers committed
352 353
a list equality involving [(::)] and [(++)] of two lists that have a different
length as one of its hypotheses. *)
354
Tactic Notation "discriminate_list" hyp(H) :=
Robbert Krebbers's avatar
Robbert Krebbers committed
355 356
  apply (f_equal length) in H;
  repeat (csimpl in H || rewrite app_length in H); exfalso; lia.
357 358
Tactic Notation "discriminate_list" :=
  match goal with H : @eq (list _) _ _ |- _ => discriminate_list H end.
Robbert Krebbers's avatar
Robbert Krebbers committed
359

360
(** The tactic [simplify_list_eq] simplifies hypotheses involving
Robbert Krebbers's avatar
Robbert Krebbers committed
361 362
equalities on lists using injectivity of [(::)] and [(++)]. Also, it simplifies
lookups in singleton lists. *)
363
Lemma app_inj_1 {A} (l1 k1 l2 k2 : list A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
364 365
  length l1 = length k1 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof. revert k1. induction l1; intros [|??]; naive_solver. Qed.
366
Lemma app_inj_2 {A} (l1 k1 l2 k2 : list A) :
Robbert Krebbers's avatar
Robbert Krebbers committed
367 368
  length l2 = length k2 → l1 ++ l2 = k1 ++ k2 → l1 = k1 ∧ l2 = k2.
Proof.
369
  intros ? Hl. apply app_inj_1; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
370 371
  apply (f_equal length) in Hl. rewrite !app_length in Hl. lia.
Qed.
372
Ltac simplify_list_eq :=
Robbert Krebbers's avatar
Robbert Krebbers committed
373
  repeat match goal with
374
  | _ => progress simplify_eq/=
Robbert Krebbers's avatar
Robbert Krebbers committed
375 376
  | H : _ ++ _ = _ ++ _ |- _ => first
    [ apply app_inv_head in H | apply app_inv_tail in H
377 378
    | apply app_inj_1 in H; [destruct H|done]
    | apply app_inj_2 in H; [destruct H|done] ]
Robbert Krebbers's avatar
Robbert Krebbers committed
379 380 381 382 383 384 385 386 387 388
  | H : [?x] !! ?i = Some ?y |- _ =>
    destruct i; [change (Some x = Some y) in H | discriminate]
  end.

(** * General theorems *)
Section general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.

389
Global Instance: Inj2 (=) (=) (=) (@cons A).
Robbert Krebbers's avatar
Robbert Krebbers committed
390
Proof. by injection 1. Qed.
391
Global Instance: ∀ k, Inj (=) (=) (k ++).
Robbert Krebbers's avatar
Robbert Krebbers committed
392
Proof. intros ???. apply app_inv_head. Qed.
393
Global Instance: ∀ k, Inj (=) (=) (++ k).
Robbert Krebbers's avatar
Robbert Krebbers committed
394
Proof. intros ???. apply app_inv_tail. Qed.
395
Global Instance: Assoc (=) (@app A).
Robbert Krebbers's avatar
Robbert Krebbers committed
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
Proof. intros ???. apply app_assoc. Qed.
Global Instance: LeftId (=) [] (@app A).
Proof. done. Qed.
Global Instance: RightId (=) [] (@app A).
Proof. intro. apply app_nil_r. Qed.

Lemma app_nil l1 l2 : l1 ++ l2 = [] ↔ l1 = [] ∧ l2 = [].
Proof. split. apply app_eq_nil. by intros [-> ->]. Qed.
Lemma app_singleton l1 l2 x :
  l1 ++ l2 = [x] ↔ l1 = [] ∧ l2 = [x] ∨ l1 = [x] ∧ l2 = [].
Proof. split. apply app_eq_unit. by intros [[-> ->]|[-> ->]]. Qed.
Lemma cons_middle x l1 l2 : l1 ++ x :: l2 = l1 ++ [x] ++ l2.
Proof. done. Qed.
Lemma list_eq l1 l2 : (∀ i, l1 !! i = l2 !! i) → l1 = l2.
Proof.
411
  revert l2. induction l1 as [|x l1 IH]; intros [|y l2] H.
412 413 414
  - done.
  - discriminate (H 0).
  - discriminate (H 0).
415
  - f_equal; [by injection (H 0)|]. apply (IH _ $ λ i, H (S i)).
Robbert Krebbers's avatar
Robbert Krebbers committed
416
Qed.
417 418
Global Instance list_eq_dec {dec : EqDecision A} : EqDecision (list A) :=
  list_eq_dec dec.
Robbert Krebbers's avatar
Robbert Krebbers committed
419 420 421
Global Instance list_eq_nil_dec l : Decision (l = []).
Proof. by refine match l with [] => left _ | _ => right _ end. Defined.
Lemma list_singleton_reflect l :
422
  option_reflect (λ x, l = [x]) (length l ≠ 1) (maybe (λ x, [x]) l).
Robbert Krebbers's avatar
Robbert Krebbers committed
423 424 425 426 427 428 429 430 431 432 433 434 435
Proof. by destruct l as [|? []]; constructor. Defined.

Definition nil_length : length (@nil A) = 0 := eq_refl.
Definition cons_length x l : length (x :: l) = S (length l) := eq_refl.
Lemma nil_or_length_pos l : l = [] ∨ length l ≠ 0.
Proof. destruct l; simpl; auto with lia. Qed.
Lemma nil_length_inv l : length l = 0 → l = [].
Proof. by destruct l. Qed.
Lemma lookup_nil i : @nil A !! i = None.
Proof. by destruct i. Qed.
Lemma lookup_tail l i : tail l !! i = l !! S i.
Proof. by destruct l. Qed.
Lemma lookup_lt_Some l i x : l !! i = Some x → i < length l.
436
Proof. revert i. induction l; intros [|?] ?; naive_solver auto with arith. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
437 438 439
Lemma lookup_lt_is_Some_1 l i : is_Some (l !! i) → i < length l.
Proof. intros [??]; eauto using lookup_lt_Some. Qed.
Lemma lookup_lt_is_Some_2 l i : i < length l → is_Some (l !! i).
440
Proof. revert i. induction l; intros [|?] ?; naive_solver eauto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
441 442 443 444 445 446 447 448 449 450 451 452 453
Lemma lookup_lt_is_Some l i : is_Some (l !! i) ↔ i < length l.
Proof. split; auto using lookup_lt_is_Some_1, lookup_lt_is_Some_2. Qed.
Lemma lookup_ge_None l i : l !! i = None ↔ length l ≤ i.
Proof. rewrite eq_None_not_Some, lookup_lt_is_Some. lia. Qed.
Lemma lookup_ge_None_1 l i : l !! i = None → length l ≤ i.
Proof. by rewrite lookup_ge_None. Qed.
Lemma lookup_ge_None_2 l i : length l ≤ i → l !! i = None.
Proof. by rewrite lookup_ge_None. Qed.
Lemma list_eq_same_length l1 l2 n :
  length l2 = n → length l1 = n →
  (∀ i x y, i < n → l1 !! i = Some x → l2 !! i = Some y → x = y) → l1 = l2.
Proof.
  intros <- Hlen Hl; apply list_eq; intros i. destruct (l2 !! i) as [x|] eqn:Hx.
454
  - destruct (lookup_lt_is_Some_2 l1 i) as [y Hy].
Robbert Krebbers's avatar
Robbert Krebbers committed
455 456
    { rewrite Hlen; eauto using lookup_lt_Some. }
    rewrite Hy; f_equal; apply (Hl i); eauto using lookup_lt_Some.
457
  - by rewrite lookup_ge_None, Hlen, <-lookup_ge_None.
Robbert Krebbers's avatar
Robbert Krebbers committed
458 459
Qed.
Lemma lookup_app_l l1 l2 i : i < length l1 → (l1 ++ l2) !! i = l1 !! i.
460
Proof. revert i. induction l1; intros [|?]; naive_solver auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
461 462 463 464 465 466 467 468 469 470
Lemma lookup_app_l_Some l1 l2 i x : l1 !! i = Some x → (l1 ++ l2) !! i = Some x.
Proof. intros. rewrite lookup_app_l; eauto using lookup_lt_Some. Qed.
Lemma lookup_app_r l1 l2 i :
  length l1 ≤ i → (l1 ++ l2) !! i = l2 !! (i - length l1).
Proof. revert i. induction l1; intros [|?]; simpl; auto with lia. Qed.
Lemma lookup_app_Some l1 l2 i x :
  (l1 ++ l2) !! i = Some x ↔
    l1 !! i = Some x ∨ length l1 ≤ i ∧ l2 !! (i - length l1) = Some x.
Proof.
  split.
471
  - revert i. induction l1 as [|y l1 IH]; intros [|i] ?;
472
      simplify_eq/=; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
473
    destruct (IH i) as [?|[??]]; auto with lia.
474
  - intros [?|[??]]; auto using lookup_app_l_Some. by rewrite lookup_app_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
475 476 477 478 479
Qed.
Lemma list_lookup_middle l1 l2 x n :
  n = length l1 → (l1 ++ x :: l2) !! n = Some x.
Proof. intros ->. by induction l1. Qed.

Ralf Jung's avatar
Ralf Jung committed
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
Lemma nth_lookup_or_length l i d :
  {l !! i = Some (nth i l d)} + {(length l ≤ i)%nat}.
Proof.
  revert i; induction l; intros i.
  - right. simpl. omega.
  - destruct i; simpl.
    + left. done.
    + destruct (IHl i) as [->|]; [by left|].
      right. omega.
Qed.

Lemma nth_lookup l i d x :
  l !! i = Some x → nth i l d = x.
Proof.
  revert i; induction l; intros i; [done|].
  destruct i; simpl.
  - congruence.
  - apply IHl.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
500
Lemma list_insert_alter l i x : <[i:=x]>l = alter (λ _, x) i l.
501
Proof. by revert i; induction l; intros []; intros; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
Lemma alter_length f l i : length (alter f i l) = length l.
503
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
504
Lemma insert_length l i x : length (<[i:=x]>l) = length l.
505
Proof. revert i. by induction l; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
506 507 508
Lemma list_lookup_alter f l i : alter f i l !! i = f <$> l !! i.
Proof. revert i. induction l. done. intros [|i]. done. apply (IHl i). Qed.
Lemma list_lookup_alter_ne f l i j : i ≠ j → alter f i l !! j = l !! j.
509
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
510
Lemma list_lookup_insert l i x : i < length l → <[i:=x]>l !! i = Some x.
511
Proof. revert i. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Lemma list_lookup_insert_ne l i j x : i ≠ j → <[i:=x]>l !! j = l !! j.
513
Proof. revert i j. induction l; [done|]. intros [] []; naive_solver. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
514 515 516 517 518 519
Lemma list_lookup_insert_Some l i x j y :
  <[i:=x]>l !! j = Some y ↔
    i = j ∧ x = y ∧ j < length l ∨ i ≠ j ∧ l !! j = Some y.
Proof.
  destruct (decide (i = j)) as [->|];
    [split|rewrite list_lookup_insert_ne by done; tauto].
520
  - intros Hy. assert (j < length l).
Robbert Krebbers's avatar
Robbert Krebbers committed
521 522
    { rewrite <-(insert_length l j x); eauto using lookup_lt_Some. }
    rewrite list_lookup_insert in Hy by done; naive_solver.
523
  - intros [(?&?&?)|[??]]; rewrite ?list_lookup_insert; naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
524 525 526
Qed.
Lemma list_insert_commute l i j x y :
  i ≠ j → <[i:=x]>(<[j:=y]>l) = <[j:=y]>(<[i:=x]>l).
527
Proof. revert i j. by induction l; intros [|?] [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
528 529 530
Lemma list_lookup_other l i x :
  length l ≠ 1 → l !! i = Some x → ∃ j y, j ≠ i ∧ l !! j = Some y.
Proof.
531
  intros. destruct i, l as [|x0 [|x1 l]]; simplify_eq/=.
532 533
  - by exists 1, x1.
  - by exists 0, x0.
Robbert Krebbers's avatar
Robbert Krebbers committed
534 535 536
Qed.
Lemma alter_app_l f l1 l2 i :
  i < length l1 → alter f i (l1 ++ l2) = alter f i l1 ++ l2.
537
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
538 539
Lemma alter_app_r f l1 l2 i :
  alter f (length l1 + i) (l1 ++ l2) = l1 ++ alter f i l2.
540
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
541 542 543 544 545 546 547
Lemma alter_app_r_alt f l1 l2 i :
  length l1 ≤ i → alter f i (l1 ++ l2) = l1 ++ alter f (i - length l1) l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply alter_app_r.
Qed.
Lemma list_alter_id f l i : (∀ x, f x = x) → alter f i l = l.
548
Proof. intros ?. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
549 550
Lemma list_alter_ext f g l k i :
  (∀ x, l !! i = Some x → f x = g x) → l = k → alter f i l = alter g i k.
551
Proof. intros H ->. revert i H. induction k; intros [|?] ?; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
552 553
Lemma list_alter_compose f g l i :
  alter (f ∘ g) i l = alter f i (alter g i l).
554
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556
Lemma list_alter_commute f g l i j :
  i ≠ j → alter f i (alter g j l) = alter g j (alter f i l).
557
Proof. revert i j. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
558 559
Lemma insert_app_l l1 l2 i x :
  i < length l1 → <[i:=x]>(l1 ++ l2) = <[i:=x]>l1 ++ l2.
560
Proof. revert i. induction l1; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
561
Lemma insert_app_r l1 l2 i x : <[length l1+i:=x]>(l1 ++ l2) = l1 ++ <[i:=x]>l2.
562
Proof. revert i. induction l1; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
563 564 565 566 567 568 569
Lemma insert_app_r_alt l1 l2 i x :
  length l1 ≤ i → <[i:=x]>(l1 ++ l2) = l1 ++ <[i - length l1:=x]>l2.
Proof.
  intros. assert (i = length l1 + (i - length l1)) as Hi by lia.
  rewrite Hi at 1. by apply insert_app_r.
Qed.
Lemma delete_middle l1 l2 x : delete (length l1) (l1 ++ x :: l2) = l1 ++ l2.
570
Proof. induction l1; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

Lemma inserts_length l i k : length (list_inserts i k l) = length l.
Proof.
  revert i. induction k; intros ?; csimpl; rewrite ?insert_length; auto.
Qed.
Lemma list_lookup_inserts l i k j :
  i ≤ j < i + length k → j < length l →
  list_inserts i k l !! j = k !! (j - i).
Proof.
  revert i j. induction k as [|y k IH]; csimpl; intros i j ??; [lia|].
  destruct (decide (i = j)) as [->|].
  { by rewrite list_lookup_insert, Nat.sub_diag
      by (rewrite inserts_length; lia). }
  rewrite list_lookup_insert_ne, IH by lia.
  by replace (j - i) with (S (j - S i)) by lia.
Qed.
Lemma list_lookup_inserts_lt l i k j :
  j < i → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; intros i j ?; csimpl;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_ge l i k j :
  i + length k ≤ j → list_inserts i k l !! j = l !! j.
Proof.
  revert i j. induction k; csimpl; intros i j ?;
    rewrite ?list_lookup_insert_ne by lia; auto with lia.
Qed.
Lemma list_lookup_inserts_Some l i k j y :
  list_inserts i k l !! j = Some y ↔
    (j < i ∨ i + length k ≤ j) ∧ l !! j = Some y ∨
    i ≤ j < i + length k ∧ j < length l ∧ k !! (j - i) = Some y.
Proof.
  destruct (decide (j < i)).
  { rewrite list_lookup_inserts_lt by done; intuition lia. }
  destruct (decide (i + length k ≤ j)).
  { rewrite list_lookup_inserts_ge by done; intuition lia. }
  split.
609
  - intros Hy. assert (j < length l).
Robbert Krebbers's avatar
Robbert Krebbers committed
610 611
    { rewrite <-(inserts_length l i k); eauto using lookup_lt_Some. }
    rewrite list_lookup_inserts in Hy by lia. intuition lia.
612
  - intuition. by rewrite list_lookup_inserts by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
Qed.
Lemma list_insert_inserts_lt l i j x k :
  i < j → <[i:=x]>(list_inserts j k l) = list_inserts j k (<[i:=x]>l).
Proof.
  revert i j. induction k; intros i j ?; simpl;
    rewrite 1?list_insert_commute by lia; auto with f_equal.
Qed.

(** ** Properties of the [elem_of] predicate *)
Lemma not_elem_of_nil x : x ∉ [].
Proof. by inversion 1. Qed.
Lemma elem_of_nil x : x ∈ [] ↔ False.
Proof. intuition. by destruct (not_elem_of_nil x). Qed.
Lemma elem_of_nil_inv l : (∀ x, x ∉ l) → l = [].
Proof. destruct l. done. by edestruct 1; constructor. Qed.
Lemma elem_of_not_nil x l : x ∈ l → l ≠ [].
Proof. intros ? ->. by apply (elem_of_nil x). Qed.
Lemma elem_of_cons l x y : x ∈ y :: l ↔ x = y ∨ x ∈ l.
Proof. by split; [inversion 1; subst|intros [->|?]]; constructor. Qed.
Lemma not_elem_of_cons l x y : x ∉ y :: l ↔ x ≠ y ∧ x ∉ l.
Proof. rewrite elem_of_cons. tauto. Qed.
Lemma elem_of_app l1 l2 x : x ∈ l1 ++ l2 ↔ x ∈ l1 ∨ x ∈ l2.
Proof.
  induction l1.
637 638
  - split; [by right|]. intros [Hx|]; [|done]. by destruct (elem_of_nil x).
  - simpl. rewrite !elem_of_cons, IHl1. tauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
639 640 641 642 643 644 645 646 647 648
Qed.
Lemma not_elem_of_app l1 l2 x : x ∉ l1 ++ l2 ↔ x ∉ l1 ∧ x ∉ l2.
Proof. rewrite elem_of_app. tauto. Qed.
Lemma elem_of_list_singleton x y : x ∈ [y] ↔ x = y.
Proof. rewrite elem_of_cons, elem_of_nil. tauto. Qed.
Global Instance elem_of_list_permutation_proper x : Proper ((≡ₚ) ==> iff) (x ∈).
Proof. induction 1; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma elem_of_list_split l x : x ∈ l → ∃ l1 l2, l = l1 ++ x :: l2.
Proof.
  induction 1 as [x l|x y l ? [l1 [l2 ->]]]; [by eexists [], l|].
649
  by exists (y :: l1), l2.
Robbert Krebbers's avatar
Robbert Krebbers committed
650 651 652 653 654 655 656 657
Qed.
Lemma elem_of_list_lookup_1 l x : x ∈ l → ∃ i, l !! i = Some x.
Proof.
  induction 1 as [|???? IH]; [by exists 0 |].
  destruct IH as [i ?]; auto. by exists (S i).
Qed.
Lemma elem_of_list_lookup_2 l i x : l !! i = Some x → x ∈ l.
Proof.
658
  revert i. induction l; intros [|i] ?; simplify_eq/=; constructor; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
659 660 661 662 663 664 665
Qed.
Lemma elem_of_list_lookup l x : x ∈ l ↔ ∃ i, l !! i = Some x.
Proof. firstorder eauto using elem_of_list_lookup_1, elem_of_list_lookup_2. Qed.
Lemma elem_of_list_omap {B} (f : A → option B) l (y : B) :
  y ∈ omap f l ↔ ∃ x, x ∈ l ∧ f x = Some y.
Proof.
  split.
666
  - induction l as [|x l]; csimpl; repeat case_match; inversion 1; subst;
Robbert Krebbers's avatar
Robbert Krebbers committed
667
      setoid_rewrite elem_of_cons; naive_solver.
668
  - intros (x&Hx&?). by induction Hx; csimpl; repeat case_match;
669
      simplify_eq; try constructor; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
Qed.

(** ** Properties of the [NoDup] predicate *)
Lemma NoDup_nil : NoDup (@nil A) ↔ True.
Proof. split; constructor. Qed.
Lemma NoDup_cons x l : NoDup (x :: l) ↔ x ∉ l ∧ NoDup l.
Proof. split. by inversion 1. intros [??]. by constructor. Qed.
Lemma NoDup_cons_11 x l : NoDup (x :: l) → x ∉ l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_cons_12 x l : NoDup (x :: l) → NoDup l.
Proof. rewrite NoDup_cons. by intros [??]. Qed.
Lemma NoDup_singleton x : NoDup [x].
Proof. constructor. apply not_elem_of_nil. constructor. Qed.
Lemma NoDup_app l k : NoDup (l ++ k) ↔ NoDup l ∧ (∀ x, x ∈ l → x ∉ k) ∧ NoDup k.
Proof.
  induction l; simpl.
686 687
  - rewrite NoDup_nil. setoid_rewrite elem_of_nil. naive_solver.
  - rewrite !NoDup_cons.
Robbert Krebbers's avatar
Robbert Krebbers committed
688 689 690 691 692
    setoid_rewrite elem_of_cons. setoid_rewrite elem_of_app. naive_solver.
Qed.
Global Instance NoDup_proper: Proper ((≡ₚ) ==> iff) (@NoDup A).
Proof.
  induction 1 as [|x l k Hlk IH | |].
693 694 695 696
  - by rewrite !NoDup_nil.
  - by rewrite !NoDup_cons, IH, Hlk.
  - rewrite !NoDup_cons, !elem_of_cons. intuition.
  - intuition.
Robbert Krebbers's avatar
Robbert Krebbers committed
697 698 699 700 701
Qed.
Lemma NoDup_lookup l i j x :
  NoDup l → l !! i = Some x → l !! j = Some x → i = j.
Proof.
  intros Hl. revert i j. induction Hl as [|x' l Hx Hl IH].
702 703
  { intros; simplify_eq. }
  intros [|i] [|j] ??; simplify_eq/=; eauto with f_equal;
Robbert Krebbers's avatar
Robbert Krebbers committed
704 705 706 707 708 709 710
    exfalso; eauto using elem_of_list_lookup_2.
Qed.
Lemma NoDup_alt l :
  NoDup l ↔ ∀ i j x, l !! i = Some x → l !! j = Some x → i = j.
Proof.
  split; eauto using NoDup_lookup.
  induction l as [|x l IH]; intros Hl; constructor.
711
  - rewrite elem_of_list_lookup. intros [i ?].
Robbert Krebbers's avatar
Robbert Krebbers committed
712
    by feed pose proof (Hl (S i) 0 x); auto.
713
  - apply IH. intros i j x' ??. by apply (inj S), (Hl (S i) (S j) x').
Robbert Krebbers's avatar
Robbert Krebbers committed
714 715 716
Qed.

Section no_dup_dec.
717
  Context `{!EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
  Global Instance NoDup_dec: ∀ l, Decision (NoDup l) :=
    fix NoDup_dec l :=
    match l return Decision (NoDup l) with
    | [] => left NoDup_nil_2
    | x :: l =>
      match decide_rel (∈) x l with
      | left Hin => right (λ H, NoDup_cons_11 _ _ H Hin)
      | right Hin =>
        match NoDup_dec l with
        | left H => left (NoDup_cons_2 _ _ Hin H)
        | right H => right (H ∘ NoDup_cons_12 _ _)
        end
      end
    end.
  Lemma elem_of_remove_dups l x : x ∈ remove_dups l ↔ x ∈ l.
  Proof.
    split; induction l; simpl; repeat case_decide;
735
      rewrite ?elem_of_cons; intuition (simplify_eq; auto).
Robbert Krebbers's avatar
Robbert Krebbers committed
736 737 738 739 740 741 742 743 744 745
  Qed.
  Lemma NoDup_remove_dups l : NoDup (remove_dups l).
  Proof.
    induction l; simpl; repeat case_decide; try constructor; auto.
    by rewrite elem_of_remove_dups.
  Qed.
End no_dup_dec.

(** ** Set operations on lists *)
Section list_set.
746
  Context `{!EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
747 748 749 750 751 752 753 754
  Lemma elem_of_list_difference l k x : x ∈ list_difference l k ↔ x ∈ l ∧ x ∉ k.
  Proof.
    split; induction l; simpl; try case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_difference l k : NoDup l → NoDup (list_difference l k).
  Proof.
    induction 1; simpl; try case_decide.
755 756 757
    - constructor.
    - done.
    - constructor. rewrite elem_of_list_difference; intuition. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
758 759 760 761 762 763 764 765 766
  Qed.
  Lemma elem_of_list_union l k x : x ∈ list_union l k ↔ x ∈ l ∨ x ∈ k.
  Proof.
    unfold list_union. rewrite elem_of_app, elem_of_list_difference.
    intuition. case (decide (x ∈ k)); intuition.
  Qed.
  Lemma NoDup_list_union l k : NoDup l → NoDup k → NoDup (list_union l k).
  Proof.
    intros. apply NoDup_app. repeat split.
767 768 769
    - by apply NoDup_list_difference.
    - intro. rewrite elem_of_list_difference. intuition.
    - done.
Robbert Krebbers's avatar
Robbert Krebbers committed
770 771 772 773 774 775 776 777 778 779
  Qed.
  Lemma elem_of_list_intersection l k x :
    x ∈ list_intersection l k ↔ x ∈ l ∧ x ∈ k.
  Proof.
    split; induction l; simpl; repeat case_decide;
      rewrite ?elem_of_nil, ?elem_of_cons; intuition congruence.
  Qed.
  Lemma NoDup_list_intersection l k : NoDup l → NoDup (list_intersection l k).
  Proof.
    induction 1; simpl; try case_decide.
780 781 782
    - constructor.
    - constructor. rewrite elem_of_list_intersection; intuition. done.
    - done.
Robbert Krebbers's avatar
Robbert Krebbers committed
783 784 785 786 787 788
  Qed.
  Lemma elem_of_list_intersection_with f l k x :
    x ∈ list_intersection_with f l k ↔ ∃ x1 x2,
      x1 ∈ l ∧ x2 ∈ k ∧ f x1 x2 = Some x.
  Proof.
    split.
789
    - induction l as [|x1 l IH]; simpl; [by rewrite elem_of_nil|].
Robbert Krebbers's avatar
Robbert Krebbers committed
790 791 792 793 794 795
      intros Hx. setoid_rewrite elem_of_cons.
      cut ((∃ x2, x2 ∈ k ∧ f x1 x2 = Some x)
        ∨ x ∈ list_intersection_with f l k); [naive_solver|].
      clear IH. revert Hx. generalize (list_intersection_with f l k).
      induction k; simpl; [by auto|].
      case_match; setoid_rewrite elem_of_cons; naive_solver.
796
    - intros (x1&x2&Hx1&Hx2&Hx). induction Hx1 as [x1|x1 ? l ? IH]; simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
      + generalize (list_intersection_with f l k).
        induction Hx2; simpl; [by rewrite Hx; left |].
        case_match; simpl; try setoid_rewrite elem_of_cons; auto.
      + generalize (IH Hx). clear Hx IH Hx2.
        generalize (list_intersection_with f l k).
        induction k; simpl; intros; [done|].
        case_match; simpl; rewrite ?elem_of_cons; auto.
  Qed.
End list_set.

(** ** Properties of the [filter] function *)
Section filter.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
  Lemma elem_of_list_filter l x : x ∈ filter P l ↔ P x ∧ x ∈ l.
  Proof.
    unfold filter. induction l; simpl; repeat case_decide;
       rewrite ?elem_of_nil, ?elem_of_cons; naive_solver.
  Qed.
  Lemma NoDup_filter l : NoDup l → NoDup (filter P l).
  Proof.
    unfold filter. induction 1; simpl; repeat case_decide;
      rewrite ?NoDup_nil, ?NoDup_cons, ?elem_of_list_filter; tauto.
  Qed.
End filter.

(** ** Properties of the [find] function *)
Section find.
  Context (P : A → Prop) `{∀ x, Decision (P x)}.
  Lemma list_find_Some l i x :
    list_find P l = Some (i,x) → l !! i = Some x ∧ P x.
  Proof.
828 829 830
    revert i; induction l; intros [] ?; repeat first
      [ match goal with x : prod _ _ |- _ => destruct x end
      | simplify_option_eq ]; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
831 832 833
  Qed.
  Lemma list_find_elem_of l x : x ∈ l → P x → is_Some (list_find P l).
  Proof.
834
    induction 1 as [|x y l ? IH]; intros; simplify_option_eq; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
    by destruct IH as [[i x'] ->]; [|exists (S i, x')].
  Qed.
End find.

(** ** Properties of the [reverse] function *)
Lemma reverse_nil : reverse [] = @nil A.
Proof. done. Qed.
Lemma reverse_singleton x : reverse [x] = [x].
Proof. done. Qed.
Lemma reverse_cons l x : reverse (x :: l) = reverse l ++ [x].
Proof. unfold reverse. by rewrite <-!rev_alt. Qed.
Lemma reverse_snoc l x : reverse (l ++ [x]) = x :: reverse l.
Proof. unfold reverse. by rewrite <-!rev_alt, rev_unit. Qed.
Lemma reverse_app l1 l2 : reverse (l1 ++ l2) = reverse l2 ++ reverse l1.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_app_distr. Qed.
Lemma reverse_length l : length (reverse l) = length l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_length. Qed.
Lemma reverse_involutive l : reverse (reverse l) = l.
Proof. unfold reverse. rewrite <-!rev_alt. apply rev_involutive. Qed.
Lemma elem_of_reverse_2 x l : x ∈ l → x ∈ reverse l.
Proof.
  induction 1; rewrite reverse_cons, elem_of_app,
    ?elem_of_list_singleton; intuition.
Qed.
Lemma elem_of_reverse x l : x ∈ reverse l ↔ x ∈ l.
Proof.
  split; auto using elem_of_reverse_2.
  intros. rewrite <-(reverse_involutive l). by apply elem_of_reverse_2.
Qed.
864
Global Instance: Inj (=) (=) (@reverse A).
Robbert Krebbers's avatar
Robbert Krebbers committed
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
Proof.
  intros l1 l2 Hl.
  by rewrite <-(reverse_involutive l1), <-(reverse_involutive l2), Hl.
Qed.
Lemma sum_list_with_app (f : A → nat) l k :
  sum_list_with f (l ++ k) = sum_list_with f l + sum_list_with f k.
Proof. induction l; simpl; lia. Qed.
Lemma sum_list_with_reverse (f : A → nat) l :
  sum_list_with f (reverse l) = sum_list_with f l.
Proof.
  induction l; simpl; rewrite ?reverse_cons, ?sum_list_with_app; simpl; lia.
Qed.

(** ** Properties of the [last] function *)
Lemma last_snoc x l : last (l ++ [x]) = Some x.
Proof. induction l as [|? []]; simpl; auto. Qed.
Lemma last_reverse l : last (reverse l) = head l.
Proof. by destruct l as [|x l]; rewrite ?reverse_cons, ?last_snoc. Qed.
Lemma head_reverse l : head (reverse l) = last l.
Proof. by rewrite <-last_reverse, reverse_involutive. Qed.

(** ** Properties of the [take] function *)
Definition take_drop i l : take i l ++ drop i l = l := firstn_skipn i l.
Lemma take_drop_middle l i x :
  l !! i = Some x → take i l ++ x :: drop (S i) l = l.
Proof.
891
  revert i x. induction l; intros [|?] ??; simplify_eq/=; f_equal; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
892 893 894 895
Qed.
Lemma take_nil n : take n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma take_app l k : take (length l) (l ++ k) = l.
896
Proof. induction l; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
897 898 899
Lemma take_app_alt l k n : n = length l → take n (l ++ k) = l.
Proof. intros ->. by apply take_app. Qed.
Lemma take_app3_alt l1 l2 l3 n : n = length l1 → take n ((l1 ++ l2) ++ l3) = l1.
900
Proof. intros ->. by rewrite <-(assoc_L (++)), take_app. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
901
Lemma take_app_le l k n : n ≤ length l → take n (l ++ k) = take n l.
902
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
903 904
Lemma take_plus_app l k n m :
  length l = n → take (n + m) (l ++ k) = l ++ take m k.
905
Proof. intros <-. induction l; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
906 907
Lemma take_app_ge l k n :
  length l ≤ n → take n (l ++ k) = l ++ take (n - length l) k.
908
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
909
Lemma take_ge l n : length l ≤ n → take n l = l.
910
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
911
Lemma take_take l n m : take n (take m l) = take (min n m) l.
912
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
913
Lemma take_idemp l n : take n (take n l) = take n l.
Robbert Krebbers's avatar
Robbert Krebbers committed
914 915
Proof. by rewrite take_take, Min.min_idempotent. Qed.
Lemma take_length l n : length (take n l) = min n (length l).
916
Proof. revert n. induction l; intros [|?]; f_equal/=; done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
Lemma take_length_le l n : n ≤ length l → length (take n l) = n.
Proof. rewrite take_length. apply Min.min_l. Qed.
Lemma take_length_ge l n : length l ≤ n → length (take n l) = length l.
Proof. rewrite take_length. apply Min.min_r. Qed.
Lemma take_drop_commute l n m : take n (drop m l) = drop m (take (m + n) l).
Proof.
  revert n m. induction l; intros [|?][|?]; simpl; auto using take_nil with lia.
Qed.
Lemma lookup_take l n i : i < n → take n l !! i = l !! i.
Proof. revert n i. induction l; intros [|n] [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_take_ge l n i : n ≤ i → take n l !! i = None.
Proof. revert n i. induction l; intros [|?] [|?] ?; simpl; auto with lia. Qed.
Lemma take_alter f l n i : n ≤ i → take n (alter f i l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
932 933
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_alter_ne by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
934 935 936 937
Qed.
Lemma take_insert l n i x : n ≤ i → take n (<[i:=x]>l) = take n l.
Proof.
  intros. apply list_eq. intros j. destruct (le_lt_dec n j).
938 939
  - by rewrite !lookup_take_ge.
  - by rewrite !lookup_take, !list_lookup_insert_ne by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
940 941 942 943 944 945 946 947
Qed.

(** ** Properties of the [drop] function *)
Lemma drop_0 l : drop 0 l = l.
Proof. done. Qed.
Lemma drop_nil n : drop n (@nil A) = [].
Proof. by destruct n. Qed.
Lemma drop_length l n : length (drop n l) = length l - n.
948
Proof. revert n. by induction l; intros [|i]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
949
Lemma drop_ge l n : length l ≤ n → drop n l = [].
Ralf Jung's avatar
Ralf Jung committed
950
Proof. revert n. induction l; intros [|?]; simpl in *; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
951 952 953 954 955 956 957 958 959 960 961 962 963
Lemma drop_all l : drop (length l) l = [].
Proof. by apply drop_ge. Qed.
Lemma drop_drop l n1 n2 : drop n1 (drop n2 l) = drop (n2 + n1) l.
Proof. revert n2. induction l; intros [|?]; simpl; rewrite ?drop_nil; auto. Qed.
Lemma drop_app_le l k n :
  n ≤ length l → drop n (l ++ k) = drop n l ++ k.
Proof. revert n. induction l; intros [|?]; simpl; auto with lia. Qed.
Lemma drop_app l k : drop (length l) (l ++ k) = k.
Proof. by rewrite drop_app_le, drop_all. Qed.
Lemma drop_app_alt l k n : n = length l → drop n (l ++ k) = k.
Proof. intros ->. by apply drop_app. Qed.
Lemma drop_app3_alt l1 l2 l3 n :
  n = length l1 → drop n ((l1 ++ l2) ++ l3) = l2 ++ l3.
964
Proof. intros ->. by rewrite <-(assoc_L (++)), drop_app. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
Lemma drop_app_ge l k n :
  length l ≤ n → drop n (l ++ k) = drop (n - length l) k.
Proof.
  intros. rewrite <-(Nat.sub_add (length l) n) at 1 by done.
  by rewrite Nat.add_comm, <-drop_drop, drop_app.
Qed.
Lemma drop_plus_app l k n m :
  length l = n → drop (n + m) (l ++ k) = drop m k.
Proof. intros <-. by rewrite <-drop_drop, drop_app. Qed.
Lemma lookup_drop l n i : drop n l !! i = l !! (n + i).
Proof. revert n i. induction l; intros [|i] ?; simpl; auto. Qed.
Lemma drop_alter f l n i : i < n → drop n (alter f i l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_alter_ne by lia.
Qed.
Lemma drop_insert l n i x : i < n → drop n (<[i:=x]>l) = drop n l.
Proof.
  intros. apply list_eq. intros j.
  by rewrite !lookup_drop, !list_lookup_insert_ne by lia.
Qed.
Lemma delete_take_drop l i : delete i l = take i l ++ drop (S i) l.
987
Proof. revert i. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
988
Lemma take_take_drop l n m : take n l ++ take m (drop n l) = take (n + m) l.
989
Proof. revert n m. induction l; intros [|?] [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
990 991 992
Lemma drop_take_drop l n m : n ≤ m → drop n (take m l) ++ drop m l = drop n l.
Proof.
  revert n m. induction l; intros [|?] [|?] ?;
993
    f_equal/=; auto using take_drop with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
994 995 996 997 998 999 1000 1001 1002
Qed.

(** ** Properties of the [replicate] function *)
Lemma replicate_length n x : length (replicate n x) = n.
Proof. induction n; simpl; auto. Qed.
Lemma lookup_replicate n x y i :
  replicate n x !! i = Some y ↔ y = x ∧ i < n.
Proof.
  split.
1003 1004
  - revert i. induction n; intros [|?]; naive_solver auto with lia.
  - intros [-> Hi]. revert i Hi.
Robbert Krebbers's avatar
Robbert Krebbers committed
1005 1006
    induction n; intros [|?]; naive_solver auto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1007 1008 1009 1010 1011
Lemma elem_of_replicate n x y : y ∈ replicate n x ↔ y = x ∧ n ≠ 0.
Proof.
  rewrite elem_of_list_lookup, Nat.neq_0_lt_0.
  setoid_rewrite lookup_replicate; naive_solver eauto with lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1012 1013 1014 1015 1016 1017 1018 1019
Lemma lookup_replicate_1 n x y i :
  replicate n x !! i = Some y → y = x ∧ i < n.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_2 n x i : i < n → replicate n x !! i = Some x.
Proof. by rewrite lookup_replicate. Qed.
Lemma lookup_replicate_None n x i : n ≤ i ↔ replicate n x !! i = None.
Proof.
  rewrite eq_None_not_Some, Nat.le_ngt. split.
1020 1021
  - intros Hin [x' Hx']; destruct Hin. rewrite lookup_replicate in Hx'; tauto.
  - intros Hx ?. destruct Hx. exists x; auto using lookup_replicate_2.
Robbert Krebbers's avatar
Robbert Krebbers committed
1022 1023
Qed.
Lemma insert_replicate x n i : <[i:=x]>(replicate n x) = replicate n x.
1024
Proof. revert i. induction n; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1025 1026 1027 1028 1029 1030
Lemma elem_of_replicate_inv x n y : x ∈ replicate n y → x = y.
Proof. induction n; simpl; rewrite ?elem_of_nil, ?elem_of_cons; intuition. Qed.
Lemma replicate_S n x : replicate (S n) x = x :: replicate  n x.
Proof. done. Qed.
Lemma replicate_plus n m x :
  replicate (n + m) x = replicate n x ++ replicate m x.
1031
Proof. induction n; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1032
Lemma take_replicate n m x : take n (replicate m x) = replicate (min n m) x.
1033
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1034 1035 1036
Lemma take_replicate_plus n m x : take n (replicate (n + m) x) = replicate n x.
Proof. by rewrite take_replicate, min_l by lia. Qed.
Lemma drop_replicate n m x : drop n (replicate m x) = replicate (m - n) x.
1037
Proof. revert m. by induction n; intros [|?]; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1038 1039 1040 1041 1042 1043
Lemma drop_replicate_plus n m x : drop n (replicate (n + m) x) = replicate m x.
Proof. rewrite drop_replicate. f_equal. lia. Qed.
Lemma replicate_as_elem_of x n l :
  replicate n x = l ↔ length l = n ∧ ∀ y, y ∈ l → y = x.
Proof.
  split; [intros <-; eauto using elem_of_replicate_inv, replicate_length|].
1044
  intros [<- Hl]. symmetry. induction l as [|y l IH]; f_equal/=.
1045 1046
  - apply Hl. by left.
  - apply IH. intros ??. apply Hl. by right.
Robbert Krebbers's avatar
Robbert Krebbers committed
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
Qed.
Lemma reverse_replicate n x : reverse (replicate n x) = replicate n x.
Proof.
  symmetry. apply replicate_as_elem_of.
  rewrite reverse_length, replicate_length. split; auto.
  intros y. rewrite elem_of_reverse. by apply elem_of_replicate_inv.
Qed.
Lemma replicate_false βs n : length βs = n → replicate n false =.>* βs.
Proof. intros <-. by induction βs; simpl; constructor. Qed.

(** ** Properties of the [resize] function *)
Lemma resize_spec l n x : resize n x l = take n l ++ replicate (n - length l) x.
1059
Proof. revert n. induction l; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1060 1061 1062
Lemma resize_0 l x : resize 0 x l = [].
Proof. by destruct l. Qed.
Lemma resize_nil n x : resize n x [] = replicate n x.
1063
Proof. rewrite resize_spec. rewrite take_nil. f_equal/=. lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
Lemma resize_ge l n x :
  length l ≤ n → resize n x l = l ++ replicate (n - length l) x.
Proof. intros. by rewrite resize_spec, take_ge. Qed.
Lemma resize_le l n x : n ≤ length l → resize n x l = take n l.
Proof.
  intros. rewrite resize_spec, (proj2 (Nat.sub_0_le _ _)) by done.
  simpl. by rewrite (right_id_L [] (++)).
Qed.
Lemma resize_all l x : resize (length l) x l = l.
Proof. intros. by rewrite resize_le, take_ge. Qed.
Lemma resize_all_alt l n x : n = length l → resize n x l = l.
Proof. intros ->. by rewrite resize_all. Qed.
Lemma resize_plus l n m x :
  resize (n + m) x l = resize n x l ++ resize m x (drop n l).
Proof.
1079
  revert n m. induction l; intros [|?] [|?]; f_equal/=; auto.
1080 1081
  - by rewrite Nat.add_0_r, (right_id_L [] (++)).
  - by rewrite replicate_plus.
Robbert Krebbers's avatar
Robbert Krebbers committed
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
Qed.
Lemma resize_plus_eq l n m x :
  length l = n → resize (n + m) x l = l ++ replicate m x.
Proof. intros <-. by rewrite resize_plus, resize_all, drop_all, resize_nil. Qed.
Lemma resize_app_le l1 l2 n x :
  n ≤ length l1 → resize n x (l1 ++ l2) = resize n x l1.
Proof.
  intros. by rewrite !resize_le, take_app_le by (rewrite ?app_length; lia).
Qed.
Lemma resize_app l1 l2 n x : n = length l1 → resize n x (l1 ++ l2) = l1.
Proof. intros ->. by rewrite resize_app_le, resize_all. Qed.
Lemma resize_app_ge l1 l2 n x :
  length l1 ≤ n → resize n x (l1 ++ l2) = l1 ++ resize (n - length l1) x l2.
Proof.
1096
  intros. rewrite !resize_spec, take_app_ge, (assoc_L (++)) by done.
Robbert Krebbers's avatar
Robbert Krebbers committed
1097 1098 1099 1100 1101
  do 2 f_equal. rewrite app_length. lia.
Qed.
Lemma resize_length l n x : length (resize n x l) = n.
Proof. rewrite resize_spec, app_length, replicate_length, take_length. lia. Qed.
Lemma resize_replicate x n m : resize n x (replicate m x) = replicate n x.
1102
Proof. revert m. induction n; intros [|?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1103 1104 1105
Lemma resize_resize l n m x : n ≤ m → resize n x (resize m x l) = resize n x l.
Proof.
  revert n m. induction l; simpl.
1106
  - intros. by rewrite !resize_nil, resize_replicate.
1107
  - intros [|?] [|?] ?; f_equal/=; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
1108
Qed.
1109
Lemma resize_idemp l n x : resize n x (resize n x l) = resize n x l.
Robbert Krebbers's avatar
Robbert Krebbers committed
1110 1111
Proof. by rewrite resize_resize. Qed.
Lemma resize_take_le l n m x : n ≤ m → resize n x (take m l) = resize n x l.
1112
Proof. revert n m. induction l; intros [|?][|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1113 1114 1115 1116
Lemma resize_take_eq l n x : resize n x (take n l) = resize n x l.
Proof. by rewrite resize_take_le. Qed.
Lemma take_resize l n m x : take n (resize m x l) = resize (min n m) x l.
Proof.
1117
  revert n m. induction l; intros [|?][|?]; f_equal/=; auto using take_replicate.
Robbert Krebbers's avatar
Robbert Krebbers committed
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
Qed.
Lemma take_resize_le l n m x : n ≤ m → take n (resize m x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_eq l n x : take n (resize n x l) = resize n x l.
Proof. intros. by rewrite take_resize, Min.min_l. Qed.
Lemma take_resize_plus l n m x : take n (resize (n + m) x l) = resize n x l.
Proof. by rewrite take_resize, min_l by lia. Qed.
Lemma drop_resize_le l n m x :
  n ≤ m → drop n (resize m x l) = resize (m - n) x (drop n l).
Proof.
  revert n m. induction l; simpl.
1129 1130
  - intros. by rewrite drop_nil, !resize_nil, drop_replicate.
  - intros [|?] [|?] ?; simpl; try case_match; auto with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
1131 1132 1133 1134 1135 1136 1137
Qed.
Lemma drop_resize_plus l n m x :
  drop n (resize (n + m) x l) = resize m x (drop n l).
Proof. rewrite drop_resize_le by lia. f_equal. lia. Qed.
Lemma lookup_resize l n x i : i < n → i < length l → resize n x l !! i = l !! i.
Proof.
  intros ??. destruct (decide (n < length l)).
1138 1139
  - by rewrite resize_le, lookup_take by lia.
  - by rewrite resize_ge, lookup_app_l by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
Qed.
Lemma lookup_resize_new l n x i :
  length l ≤ i → i < n → resize n x l !! i = Some x.
Proof.
  intros ??. rewrite resize_ge by lia.
  replace i with (length l + (i - length l)) by lia.
  by rewrite lookup_app_r, lookup_replicate_2 by lia.
Qed.
Lemma lookup_resize_old l n x i : n ≤ i → resize n x l !! i = None.
Proof. intros ?. apply lookup_ge_None_2. by rewrite resize_length. Qed.

(** ** Properties of the [reshape] function *)
Lemma reshape_length szs l : length (reshape szs l) = length szs.
1153
Proof. revert l. by induction szs; intros; f_equal/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1154 1155 1156 1157 1158 1159 1160 1161
Lemma join_reshape szs l :
  sum_list szs = length l → mjoin (reshape szs l) = l.
Proof.
  revert l. induction szs as [|sz szs IH]; simpl; intros l Hl; [by destruct l|].
  by rewrite IH, take_drop by (rewrite drop_length; lia).
Qed.
Lemma sum_list_replicate n m : sum_list (replicate m n) = m * n.
Proof. induction m; simpl; auto. Qed.
1162 1163 1164 1165 1166 1167
End general_properties.

Section more_general_properties.
Context {A : Type}.
Implicit Types x y z : A.
Implicit Types l k : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
1168 1169 1170 1171 1172

(** ** Properties of [sublist_lookup] and [sublist_alter] *)
Lemma sublist_lookup_length l i n k :
  sublist_lookup i n l = Some k → length k = n.
Proof.
1173
  unfold sublist_lookup; intros; simplify_option_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
1174 1175 1176 1177 1178 1179 1180 1181 1182
  rewrite take_length, drop_length; lia.
Qed.
Lemma sublist_lookup_all l n : length l = n → sublist_lookup 0 n l = Some l.
Proof.
  intros. unfold sublist_lookup; case_option_guard; [|lia].
  by rewrite take_ge by (rewrite drop_length; lia).
Qed.
Lemma sublist_lookup_Some l i n :
  i + n ≤ length l → sublist_lookup i n l = Some (take n (drop i l)).
1183
Proof. by unfold sublist_lookup; intros; simplify_option_eq. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1184 1185
Lemma sublist_lookup_None l i n :
  length l < i + n → sublist_lookup i n l = None.
1186
Proof. by unfold sublist_lookup; intros; simplify_option_eq by lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
Lemma sublist_eq l k n :
  (n | length l) → (n | length k) →
  (∀ i, sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
  revert l k. assert (∀ l i,
    n ≠ 0 → (n | length l) → ¬n * i `div` n + n ≤ length l → length l ≤ i).
  { intros l i ? [j ->] Hjn. apply Nat.nlt_ge; contradict Hjn.
    rewrite <-Nat.mul_succ_r, (Nat.mul_comm n).
    apply Nat.mul_le_mono_r, Nat.le_succ_l, Nat.div_lt_upper_bound; lia. }
  intros l k Hl Hk Hlookup. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l),
      (nil_length_inv k) by eauto using Nat.divide_0_l. }
  apply list_eq; intros i. specialize (Hlookup (i `div` n)).
  rewrite (Nat.mul_comm _ n) in Hlookup.
1201
  unfold sublist_lookup in *; simplify_option_eq;
Robbert Krebbers's avatar
Robbert Krebbers committed
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
    [|by rewrite !lookup_ge_None_2 by auto].
  apply (f_equal (!! i `mod` n)) in Hlookup.
  by rewrite !lookup_take, !lookup_drop, <-!Nat.div_mod in Hlookup
    by (auto using Nat.mod_upper_bound with lia).
Qed.
Lemma sublist_eq_same_length l k j n :
  length l = j * n → length k = j * n →
  (∀ i,i < j → sublist_lookup (i * n) n l = sublist_lookup (i * n) n k) → l = k.
Proof.
  intros Hl Hk ?. destruct (decide (n = 0)) as [->|].
  { by rewrite (nil_length_inv l), (nil_length_inv k) by lia. }
  apply sublist_eq with n; [by exists j|by exists j|].
  intros i. destruct (decide (i < j)); [by auto|].
  assert (∀ m, m = j * n → m < i * n + n).
  { intros ? ->. replace (i * n + n) with (S i * n) by lia.
    apply Nat.mul_lt_mono_pos_r; lia. }
  by rewrite !sublist_lookup_None by auto.
Qed.
Lemma sublist_lookup_reshape l i n m :
  0 < n → length l = m * n →
  reshape (replicate m n) l !! i = sublist_lookup (i * n) n l.
Proof.
  intros Hn Hl. unfold sublist_lookup.  apply option_eq; intros x; split.
1225
  - intros Hx. case_option_guard as Hi.
Robbert Krebbers's avatar
Robbert Krebbers committed
1226
    { f_equal. clear Hi. revert i l Hl Hx.
1227
      induction m as [|m IH]; intros [|i] l ??; simplify_eq/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1228 1229 1230 1231
      rewrite <-drop_drop. apply IH; rewrite ?drop_length; auto with lia. }
    destruct Hi. rewrite Hl, <-Nat.mul_succ_l.
    apply Nat.mul_le_mono_r, Nat.le_succ_l. apply lookup_lt_Some in Hx.
    by rewrite reshape_length, replicate_length in Hx.
1232
  - intros Hx. case_option_guard as Hi; simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
1233 1234 1235 1236 1237 1238 1239 1240
    revert i l Hl Hi. induction m as [|m IH]; [auto with lia|].
    intros [|i] l ??; simpl; [done|]. rewrite <-drop_drop.
    rewrite IH; rewrite ?drop_length; auto with lia.
Qed.
Lemma sublist_lookup_compose l1 l2 l3 i n j m :
  sublist_lookup i n l1 = Some l2 → sublist_lookup j m l2 = Some l3 →
  sublist_lookup (i + j) m l1 = Some l3.
Proof.
1241
  unfold sublist_lookup; intros; simplify_option_eq;
Robbert Krebbers's avatar
Robbert Krebbers committed
1242 1243 1244 1245 1246 1247 1248 1249 1250
    repeat match goal with
    | H : _ ≤ length _ |- _ => rewrite take_length, drop_length in H
    end; rewrite ?take_drop_commute, ?drop_drop, ?take_take,
      ?Min.min_l, Nat.add_assoc by lia; auto with lia.
Qed.
Lemma sublist_alter_length f l i n k :
  sublist_lookup i n l = Some k → length (f k) = n →
  length (sublist_alter f i n l) = length l.
Proof.
1251
  unfold sublist_alter, sublist_lookup. intros Hk ?; simplify_option_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
1252 1253 1254 1255 1256 1257 1258
  rewrite !app_length, Hk, !take_length, !drop_length; lia.
Qed.
Lemma sublist_lookup_alter f l i n k :
  sublist_lookup i n l = Some k → length (f k) = n →
  sublist_lookup i n (sublist_alter f i n l) = f <$> sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk ?. erewrite sublist_alter_length by eauto.
1259
  unfold sublist_alter; simplify_option_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
1260 1261 1262 1263 1264 1265 1266
  by rewrite Hk, drop_app_alt, take_app_alt by (rewrite ?take_length; lia).
Qed.
Lemma sublist_lookup_alter_ne f l i j n k :
  sublist_lookup j n l = Some k → length (f k) = n → i + n ≤ j ∨ j + n ≤ i →
  sublist_lookup i n (sublist_alter f j n l) = sublist_lookup i n l.
Proof.
  unfold sublist_lookup. intros Hk Hi ?. erewrite sublist_alter_length by eauto.
1267
  unfold sublist_alter; simplify_option_eq; f_equal; rewrite Hk.
Robbert Krebbers's avatar
Robbert Krebbers committed
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
  apply list_eq; intros ii.
  destruct (decide (ii < length (f k))); [|by rewrite !lookup_take_ge by lia].
  rewrite !lookup_take, !lookup_drop by done. destruct (decide (i + ii < j)).
  { by rewrite lookup_app_l, lookup_take by (rewrite ?take_length; lia). }
  rewrite lookup_app_r by (rewrite take_length; lia).
  rewrite take_length_le, lookup_app_r, lookup_drop by lia. f_equal; lia.
Qed.
Lemma sublist_alter_all f l n : length l = n → sublist_alter f 0 n l = f l.
Proof.
  intros <-. unfold sublist_alter; simpl.
  by rewrite drop_all, (right_id_L [] (++)), take_ge.
Qed.
Lemma sublist_alter_compose f g l i n k :
  sublist_lookup i n l = Some k → length (f k) = n → length (g k) = n →
  sublist_alter (f ∘ g) i n l = sublist_alter f i n (sublist_alter g i n l).
Proof.
1284
  unfold sublist_alter, sublist_lookup. intros Hk ??; simplify_option_eq.
1285
  by rewrite !take_app_alt, drop_app_alt, !(assoc_L (++)), drop_app_alt,
Robbert Krebbers's avatar
Robbert Krebbers committed
1286 1287 1288
    take_app_alt by (rewrite ?app_length, ?take_length, ?Hk; lia).
Qed.

1289
(** ** Properties of the [imap] function *)
1290 1291 1292 1293
Lemma imap_nil {B} (f : nat → A → B) : imap f [] = [].
Proof. done. Qed.
Lemma imap_app {B} (f : nat → A → B) l1 l2 :
  imap f (l1 ++ l2) = imap f l1 ++ imap (λ n, f (length l1 + n)) l2.
1294
Proof.
1295 1296 1297 1298
  unfold imap. generalize 0. revert l2.
  induction l1 as [|x l1 IH]; intros l2 n; f_equal/=; auto.
  rewrite IH. f_equal. clear. revert n.
  induction l2; simpl; auto with f_equal lia.
1299
Qed.
1300 1301 1302 1303
Lemma imap_cons {B} (f : nat → A → B) x l :
  imap f (x :: l) = f 0 x :: imap (f ∘ S) l.
Proof. apply (imap_app _ [_]). Qed.

1304
Lemma imap_ext {B} (f g : nat → A → B) l :
1305
  (∀ i x, l !! i = Some x → f i x = g i x) → imap f l = imap g l.
1306
Proof.
1307 1308
  revert f g; induction l as [|x l IH]; intros f g Hfg; auto.
  rewrite !imap_cons; f_equal; eauto.
1309 1310
Qed.

1311 1312 1313 1314
Lemma imap_fmap {B C} (f : nat → B → C) (g : A → B) l :
  imap f (g <$> l) = imap (λ n, f n ∘ g) l.
Proof. unfold imap. generalize 0. induction l; csimpl; auto with f_equal. Qed.

1315 1316 1317 1318 1319 1320 1321 1322 1323
Lemma imap_const {B} (f : A → B) l : imap (const f) l = f <$> l.
Proof. unfold imap. generalize 0. induction l; csimpl; auto with f_equal. Qed.

Lemma list_lookup_imap {B} (f : nat → A → B) l i : imap f l !! i = f i <$> l !! i.
Proof.
  revert f i. induction l as [|x l IH]; intros f [|i]; try done.
  rewrite imap_cons; simpl. by rewrite IH.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
1324 1325 1326 1327
(** ** Properties of the [mask] function *)
Lemma mask_nil f βs : mask f βs (@nil A) = [].
Proof. by destruct βs. Qed.
Lemma mask_length f βs l : length (mask f βs l) = length l.
1328
Proof. revert βs. induction l; intros [|??]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1329
Lemma mask_true f l n : length l ≤ n → mask f (replicate n true) l = f <$> l.
1330
Proof. revert n. induction l; intros [|?] ?; f_equal/=; auto with lia. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1331
Lemma mask_false f l n : mask f (replicate n false) l = l.
1332
Proof. revert l. induction n; intros [|??]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1333 1334 1335
Lemma mask_app f βs1 βs2 l :
  mask f (βs1 ++ βs2) l
  = mask f βs1 (take (length βs1) l) ++ mask f βs2 (drop (length βs1) l).
1336
Proof. revert l. induction βs1;intros [|??]; f_equal/=; auto using mask_nil. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1337 1338 1339
Lemma mask_app_2 f βs l1 l2 :
  mask f βs (l1 ++ l2)
  = mask f (take (length l1) βs) l1 ++ mask f (drop (length l1) βs) l2.
1340
Proof. revert βs. induction l1; intros [|??]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1341
Lemma take_mask f βs l n : take n (mask f βs l) = mask f (take n βs) (take n l).
1342
Proof. revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1343 1344
Lemma drop_mask f βs l n : drop n (mask f βs l) = mask f (drop n βs) (drop n l).
Proof.
1345
  revert n βs. induction l; intros [|?] [|[] ?]; f_equal/=; auto using mask_nil.
Robbert Krebbers's avatar
Robbert Krebbers committed
1346 1347 1348 1349 1350
Qed.
Lemma sublist_lookup_mask f βs l i n :
  sublist_lookup i n (mask f βs l)
  = mask f (take n (drop i βs)) <$> sublist_lookup i n l.
Proof.
1351
  unfold sublist_lookup; rewrite mask_length; simplify_option_eq; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1352 1353 1354 1355 1356 1357
  by rewrite drop_mask, take_mask.
Qed.
Lemma mask_mask f g βs1 βs2 l :
  (∀ x, f (g x) = f x) → βs1 =.>* βs2 →
  mask f βs2 (mask g βs1 l) = mask f βs2 l.
Proof.
1358
  intros ? Hβs. revert l. by induction Hβs as [|[] []]; intros [|??]; f_equal/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
1359 1360 1361 1362
Qed.
Lemma lookup_mask f βs l i :
  βs !! i = Some true → mask f βs l !! i = f <$> l !! i.
Proof.
1363
  revert i βs. induction l; intros [] [] ?; simplify_eq/=; f_equal; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1364 1365 1366 1367
Qed.
Lemma lookup_mask_notin f βs l i :
  βs !! i ≠ Some true → mask f βs l !! i = l !! i.
Proof.
1368
  revert i βs. induction l; intros [] [|[]] ?; simplify_eq/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1369 1370 1371 1372
Qed.

(** ** Properties of the [seq] function *)
Lemma fmap_seq j n : S <$> seq j n = seq (S j) n.
1373
Proof. revert j. induction n; intros; f_equal/=; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
Lemma lookup_seq j n i : i < n → seq j n !! i = Some (j + i).
Proof.
  revert j i. induction n as [|n IH]; intros j [|i] ?; simpl; auto with lia.
  rewrite IH; auto with lia.
Qed.
Lemma lookup_seq_ge j n i : n ≤ i → seq j n !! i = None.
Proof. revert j i. induction n; intros j [|i] ?; simpl; auto with lia. Qed.
Lemma lookup_seq_inv j n i j' : seq j n !! i = Some j' → j' = j + i ∧ i < n.
Proof.
  destruct (le_lt_dec n i); [by rewrite lookup_seq_ge|].
  rewrite lookup_seq by done. intuition congruence.
Qed.

(** ** Properties of the [Permutation] predicate *)
Lemma Permutation_nil l : l ≡ₚ [] ↔ l = [].
Proof. split. by intro; apply Permutation_nil. by intros ->. Qed.
Lemma Permutation_singleton l x : l ≡ₚ [x] ↔ l = [x].
Proof. split. by intro; apply Permutation_length_1_inv. by intros ->. Qed.
Definition Permutation_skip := @perm_skip A.
Definition Permutation_swap := @perm_swap A.
Definition Permutation_singleton_inj := @Permutation_length_1 A.

1396 1397
Global Instance Permutation_cons : Proper ((≡ₚ) ==> (≡ₚ)) (@cons A x).
Proof. by constructor. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1398
Global Existing Instance Permutation_app'.
1399

Robbert Krebbers's avatar
Robbert Krebbers committed
1400 1401
Global Instance: Proper ((≡ₚ) ==> (=)) (@length A).
Proof. induction 1; simpl; auto with lia. Qed.
1402
Global Instance: Comm (≡ₚ) (@app A).
Robbert Krebbers's avatar
Robbert Krebbers committed
1403 1404
Proof.
  intros l1. induction l1 as [|x l1 IH]; intros l2; simpl.
1405 1406
  - by rewrite (right_id_L [] (++)).
  - rewrite Permutation_middle, IH. simpl. by rewrite Permutation_middle.
Robbert Krebbers's avatar
Robbert Krebbers committed
1407
Qed.
1408
Global Instance: ∀ x : A, Inj (≡ₚ) (≡ₚ) (x ::).
Robbert Krebbers's avatar
Robbert Krebbers committed
1409
Proof. red. eauto using Permutation_cons_inv. Qed.
1410
Global Instance: ∀ k : list A, Inj (≡ₚ) (≡ₚ) (k ++).
Robbert Krebbers's avatar
Robbert Krebbers committed
1411 1412
Proof.
  red. induction k as [|x k IH]; intros l1 l2; simpl; auto.
1413
  intros. by apply IH, (inj (x ::)).
Robbert Krebbers's avatar
Robbert Krebbers committed
1414
Qed.
1415
Global Instance: ∀ k : list A, Inj (≡ₚ) (≡ₚ) (++ k).
1416
Proof. intros k l1 l2. rewrite !(comm (++) _ k). by apply (inj (k ++)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1417 1418 1419
Lemma replicate_Permutation n x l : replicate n x ≡ₚ l → replicate n x = l.
Proof.
  intros Hl. apply replicate_as_elem_of. split.
1420 1421
  - by rewrite <-Hl, replicate_length.
  - intros y. rewrite <-Hl. by apply elem_of_replicate_inv.
Robbert Krebbers's avatar
Robbert Krebbers committed
1422 1423 1424 1425
Qed.
Lemma reverse_Permutation l : reverse l ≡ₚ l.
Proof.
  induction l as [|x l IH]; [done|].
1426
  by rewrite reverse_cons, (comm (++)), IH.
Robbert Krebbers's avatar
Robbert Krebbers committed
1427
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1428 1429
Lemma delete_Permutation l i x : l !! i = Some x → l ≡ₚ x :: delete i l.
Proof.
1430
  revert i; induction l as [|y l IH]; intros [|i] ?; simplify_eq/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1431 1432
  by rewrite Permutation_swap, <-(IH i).
Qed.
1433 1434
Lemma elem_of_Permutation l x : x ∈ l → ∃ k, l ≡ₚ x :: k.
Proof. intros [i ?]%elem_of_list_lookup. eauto using delete_Permutation. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1435 1436 1437 1438 1439

(** ** Properties of the [prefix_of] and [suffix_of] predicates *)
Global Instance: PreOrder (@prefix_of A).
Proof.
  split.
1440 1441
  - intros ?. eexists []. by rewrite (right_id_L [] (++)).
  - intros ???[k1->] [k2->]. exists (k1 ++ k2). by rewrite (assoc_L (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
Qed.
Lemma prefix_of_nil l : [] `prefix_of` l.
Proof. by exists l. Qed.
Lemma prefix_of_nil_not x l : ¬x :: l `prefix_of` [].
Proof. by intros [k ?]. Qed.
Lemma prefix_of_cons x l1 l2 : l1 `prefix_of` l2 → x :: l1 `prefix_of` x :: l2.
Proof. intros [k ->]. by exists k. Qed.
Lemma prefix_of_cons_alt x y l1 l2 :
  x = y → l1 `prefix_of` l2 → x :: l1 `prefix_of` y :: l2.
Proof. intros ->. apply prefix_of_cons. Qed.
Lemma prefix_of_cons_inv_1 x y l1 l2 : x :: l1 `prefix_of` y :: l2 → x = y.
1453
Proof. by intros [k ?]; simplify_eq/=. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1454 1455
Lemma prefix_of_cons_inv_2 x y l1 l2 :
  x :: l1 `prefix_of` y :: l2 → l1 `prefix_of` l2.
1456
Proof. intros [k ?]; simplify_eq/=. by exists k. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1457
Lemma prefix_of_app k l1 l2 : l1 `prefix_of` l2 → k ++ l1 `prefix_of` k ++ l2.
1458
Proof. intros [k' ->]. exists k'. by rewrite (assoc_L (++)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1459 1460 1461 1462
Lemma prefix_of_app_alt k1 k2 l1 l2 :
  k1 = k2 → l1 `prefix_of` l2 → k1 ++ l1 `prefix_of` k2 ++ l2.
Proof. intros ->. apply prefix_of_app. Qed.
Lemma prefix_of_app_l l1 l2 l3 : l1 ++ l3 `prefix_of` l2 → l1 `prefix_of` l2.
1463
Proof. intros [k ->]. exists (l3 ++ k). by rewrite (assoc_L (++)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1464
Lemma prefix_of_app_r l1 l2 l3 : l1 `prefix_of` l2 → l1 `prefix_of` l2 ++ l3.
1465
Proof. intros [k ->]. exists (k ++ l3). by rewrite (assoc_L (++)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1466 1467 1468
Lemma prefix_of_length l1 l2 : l1 `prefix_of` l2 → length l1 ≤ length l2.
Proof. intros [? ->]. rewrite app_length. lia. Qed.
Lemma prefix_of_snoc_not l x : ¬l ++ [x] `prefix_of` l.
1469
Proof. intros [??]. discriminate_list. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
1470 1471 1472
Global Instance: PreOrder (@suffix_of A).
Proof.
  split.
1473 1474
  - intros ?. by eexists [].
  - intros ???[k1->] [k2->]. exists (k2 ++ k1). by rewrite (assoc_L (++)).
Robbert Krebbers's avatar
Robbert Krebbers committed
1475
Qed.
1476
Global Instance prefix_of_dec `{!EqDecision A} : ∀ l1 l2,
Robbert Krebbers's avatar
Robbert Krebbers committed
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
    Decision (l1 `prefix_of` l2) := fix go l1 l2 :=
  match l1, l2 return { l1 `prefix_of` l2 } + { ¬l1 `prefix_of` l2 } with
  | [], _ => left (prefix_of_nil _)
  | _, [] => right (prefix_of_nil_not _ _)
  | x :: l1, y :: l2 =>
    match decide_rel (=) x y with
    | left Hxy =>
      match go l1 l2 with
      | left Hl1l2 => left (prefix_of_cons_alt _ _ _ _ Hxy Hl1l2)
      | right Hl1l2 => right (Hl1l2 ∘ prefix_of_cons_inv_2 _ _ _ _)
      end
    | right Hxy => right (Hxy ∘ prefix_of_cons_inv_1 _ _ _ _)
    end
  end.

Section prefix_ops.
1493
  Context `{!EqDecision A}.
Robbert Krebbers's avatar
Robbert Krebbers committed
1494 1495 1496 1497
  Lemma max_prefix_of_fst l1 l2 :
    l1 = (max_prefix_of l1 l2).2 ++ (max_prefix_of l1 l2).1.1.
  Proof.
    revert l2. induction l1; intros [|??]; simpl;
1498
      repeat case_decide; f_equal/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1499 1500 1501 1502 1503
  Qed.
  Lemma max_prefix_of_fst_alt l1 l2 k1 k2 k3 :
    max_prefix_of l1 l2 = (k1, k2, k3) → l1 = k3 ++ k1.
  Proof.
    intros. pose proof (max_prefix_of_fst l1 l2).
1504
    by destruct (max_prefix_of l1 l2) as [[]?]; simplify_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
  Qed.
  Lemma max_prefix_of_fst_prefix l1 l2 : (max_prefix_of l1 l2).2 `prefix_of` l1.
  Proof. eexists. apply max_prefix_of_fst. Qed.
  Lemma max_prefix_of_fst_prefix_alt l1 l2 k1 k2 k3 :
    max_prefix_of l1 l2 = (k1, k2, k3) → k3 `prefix_of` l1.
  Proof. eexists. eauto using max_prefix_of_fst_alt. Qed.
  Lemma max_prefix_of_snd l1 l2 :
    l2 = (max_prefix_of l1 l2).2 ++ (max_prefix_of l1 l2).1.2.
  Proof.
    revert l2. induction l1; intros [|??]; simpl;
1515
      repeat case_decide; f_equal/=; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
1516 1517 1518 1519 1520
  Qed.
  Lemma max_prefix_of_snd_alt l1 l2 k1 k2 k3 :
    max_prefix_of l1 l2 = (k1, k2, k3) → l2 = k3 ++ k2.
  Proof.
    intro. pose proof (max_prefix_of_snd l1 l2).
1521
    by destruct (max_prefix_of l1 l2) as [[]?]; simplify_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
  Qed.
  Lemma max_prefix_of_snd_prefix l1 l2 : (max_prefix_of l1 l2).2 `prefix_of` l2.
  Proof. eexists. apply max_prefix_of_snd. Qed.
  Lemma max_prefix_of_snd_prefix_alt l1 l2 k1 k2 k3 :
    max_prefix_of l1 l2 = (k1,k2,k3) → k3 `prefix_of` l2.
  Proof. eexists. eauto using max_prefix_of_snd_alt. Qed.
  Lemma max_prefix_of_max l1 l2 k :
    k `prefix_of` l1 → k `prefix_of` l2 → k `prefix_of` (max_prefix_of l1 l2).2.
  Proof.
    intros [l1' ->] [l2' ->]. by induction k; simpl; repeat case_decide;
      simpl; auto using prefix_of_nil, prefix_of_cons.
  Qed.
  Lemma max_prefix_of_max_alt l1 l2 k1 k2 k3 k :
    max_prefix_of l1 l2 = (k1,k2,k3) →
    k `prefix_of` l1 → k `prefix_of` l2 → k `prefix_of` k3.
  Proof.
    intro. pose proof (max_prefix_of_max l1 l2 k).
1539
    by destruct (max_prefix_of l1 l2) as [[]?]; simplify_eq.
Robbert Krebbers's avatar
Robbert Krebbers committed
1540 1541 1542 1543 1544 1545
  Qed.
  Lemma max_prefix_of_max_snoc l1 l2 k1 k2 k3 x1 x2 :
    max_prefix_of l1 l2 = (x1 :: k1, x2 :: k2, k3) → x1 ≠ x2.
  Proof.
    intros Hl ->. destruct (prefix_of_snoc_not k3 x2).
    eapply max_prefix_of_max_alt; eauto.
1546
    - rewrite (max_prefix_of_fst_alt _ _ _ _ _ Hl).
Robbert Krebbers's avatar
Robbert Krebbers committed
1547
      apply prefix_of_app, prefix_of_cons, prefix_of_nil.
1548
    - rewrite (max_prefix_of_snd_alt _ _ _ _ _ Hl).
Robbert Krebbers's avatar
Robbert Krebbers committed
1549 1550 1551 1552 1553 1554 1555 1556
      apply prefix_of_app, prefix_of_cons, prefix_of_nil.
  Qed.
End prefix_ops.

Lemma prefix_suffix_reverse l1 l2 :
  l1 `prefix_of` l2 ↔ reverse l1 `suffix_of` reverse l2.
Proof.
  split; intros [k E]; exists (reverse k).
1557 1558
  - by rewrite E, reverse_app.
  - by rewrite <-(reverse_involutive l2), E, reverse_app, reverse_involutive.
Robbert Krebbers's avatar
Robbert Krebbers committed
1559 1560 1561