auth.v 13 KB
Newer Older
1
From iris.algebra Require Export excl local_updates.
2
From iris.base_logic Require Import base_logic.
3
From iris.proofmode Require Import classes.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5

6
Record auth (A : Type) := Auth { authoritative : excl' A; auth_own : A }.
7
Add Printing Constructor auth.
Robbert Krebbers's avatar
Robbert Krebbers committed
8
Arguments Auth {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
9
Arguments authoritative {_} _.
10
Arguments auth_own {_} _.
Robbert Krebbers's avatar
Robbert Krebbers committed
11 12
Notation "◯ a" := (Auth None a) (at level 20).
Notation "● a" := (Auth (Excl' a) ) (at level 20).
Robbert Krebbers's avatar
Robbert Krebbers committed
13

Robbert Krebbers's avatar
Robbert Krebbers committed
14
(* COFE *)
15
Section cofe.
16
Context {A : ofeT}.
17
Implicit Types a : excl' A.
18
Implicit Types b : A.
19
Implicit Types x y : auth A.
20 21

Instance auth_equiv : Equiv (auth A) := λ x y,
22
  authoritative x  authoritative y  auth_own x  auth_own y.
23
Instance auth_dist : Dist (auth A) := λ n x y,
24
  authoritative x {n} authoritative y  auth_own x {n} auth_own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
25

26
Global Instance Auth_ne : NonExpansive2 (@Auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
27
Proof. by split. Qed.
28 29
Global Instance Auth_proper : Proper (() ==> () ==> ()) (@Auth A).
Proof. by split. Qed.
30
Global Instance authoritative_ne: NonExpansive (@authoritative A).
Robbert Krebbers's avatar
Robbert Krebbers committed
31
Proof. by destruct 1. Qed.
32 33
Global Instance authoritative_proper : Proper (() ==> ()) (@authoritative A).
Proof. by destruct 1. Qed.
34
Global Instance own_ne : NonExpansive (@auth_own A).
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Proof. by destruct 1. Qed.
36
Global Instance own_proper : Proper (() ==> ()) (@auth_own A).
37
Proof. by destruct 1. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
38

39
Definition auth_ofe_mixin : OfeMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41
Proof.
  split.
42
  - intros x y; unfold dist, auth_dist, equiv, auth_equiv.
Robbert Krebbers's avatar
Robbert Krebbers committed
43
    rewrite !equiv_dist; naive_solver.
44
  - intros n; split.
Robbert Krebbers's avatar
Robbert Krebbers committed
45 46
    + by intros ?; split.
    + by intros ?? [??]; split; symmetry.
47
    + intros ??? [??] [??]; split; etrans; eauto.
48
  - by intros ? [??] [??] [??]; split; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
49
Qed.
50 51 52 53 54 55 56 57 58 59
Canonical Structure authC := OfeT (auth A) auth_ofe_mixin.

Definition auth_compl `{Cofe A} : Compl authC := λ c,
  Auth (compl (chain_map authoritative c)) (compl (chain_map auth_own c)).
Global Program Instance auth_cofe `{Cofe A} : Cofe authC :=
  {| compl := auth_compl |}.
Next Obligation.
  intros ? n c; split. apply (conv_compl n (chain_map authoritative c)).
  apply (conv_compl n (chain_map auth_own c)).
Qed.
60 61 62 63 64 65

Global Instance Auth_timeless a b :
  Timeless a  Timeless b  Timeless (Auth a b).
Proof. by intros ?? [??] [??]; split; apply: timeless. Qed.
Global Instance auth_discrete : Discrete A  Discrete authC.
Proof. intros ? [??]; apply _. Qed.
66
Global Instance auth_leibniz : LeibnizEquiv A  LeibnizEquiv (auth A).
67
Proof. by intros ? [??] [??] [??]; f_equal/=; apply leibniz_equiv. Qed.
68 69 70
End cofe.

Arguments authC : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
71 72

(* CMRA *)
73
Section cmra.
74
Context {A : ucmraT}.
75 76
Implicit Types a b : A.
Implicit Types x y : auth A.
77

78 79
Instance auth_valid : Valid (auth A) := λ x,
  match authoritative x with
80 81
  | Excl' a => ( n, auth_own x {n} a)   a
  | None =>  auth_own x
Robbert Krebbers's avatar
Robbert Krebbers committed
82
  | ExclBot' => False
83 84
  end.
Global Arguments auth_valid !_ /.
85
Instance auth_validN : ValidN (auth A) := λ n x,
Robbert Krebbers's avatar
Robbert Krebbers committed
86
  match authoritative x with
87 88
  | Excl' a => auth_own x {n} a  {n} a
  | None => {n} auth_own x
Robbert Krebbers's avatar
Robbert Krebbers committed
89
  | ExclBot' => False
Robbert Krebbers's avatar
Robbert Krebbers committed
90
  end.
91
Global Arguments auth_validN _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
92
Instance auth_pcore : PCore (auth A) := λ x,
93
  Some (Auth (core (authoritative x)) (core (auth_own x))).
94
Instance auth_op : Op (auth A) := λ x y,
95
  Auth (authoritative x  authoritative y) (auth_own x  auth_own y).
96

97 98 99 100 101 102 103 104 105 106 107 108 109
Definition auth_valid_eq :
  valid = λ x, match authoritative x with
               | Excl' a => ( n, auth_own x {n} a)   a
               | None =>  auth_own x
               | ExclBot' => False
               end := eq_refl _.
Definition auth_validN_eq :
  validN = λ n x, match authoritative x with
                  | Excl' a => auth_own x {n} a  {n} a
                  | None => {n} auth_own x
                  | ExclBot' => False
                  end := eq_refl _.

110
Lemma auth_included (x y : auth A) :
111
  x  y  authoritative x  authoritative y  auth_own x  auth_own y.
Robbert Krebbers's avatar
Robbert Krebbers committed
112 113 114 115
Proof.
  split; [intros [[z1 z2] Hz]; split; [exists z1|exists z2]; apply Hz|].
  intros [[z1 Hz1] [z2 Hz2]]; exists (Auth z1 z2); split; auto.
Qed.
116 117

Lemma authoritative_validN n x : {n} x  {n} authoritative x.
Robbert Krebbers's avatar
Robbert Krebbers committed
118
Proof. by destruct x as [[[]|]]. Qed.
119
Lemma auth_own_validN n x : {n} x  {n} auth_own x.
120 121 122 123
Proof.
  rewrite auth_validN_eq.
  destruct x as [[[]|]]; naive_solver eauto using cmra_validN_includedN.
Qed.
124

125 126
Lemma auth_valid_discrete `{CMRADiscrete A} x :
   x  match authoritative x with
127 128
        | Excl' a => auth_own x  a   a
        | None =>  auth_own x
129 130 131
        | ExclBot' => False
        end.
Proof.
132
  rewrite auth_valid_eq. destruct x as [[[?|]|] ?]; simpl; try done.
133 134
  setoid_rewrite <-cmra_discrete_included_iff; naive_solver eauto using 0.
Qed.
135 136
Lemma auth_validN_2 n a b : {n} ( a   b)  b {n} a  {n} a.
Proof. by rewrite auth_validN_eq /= left_id. Qed.
137 138
Lemma auth_valid_discrete_2 `{CMRADiscrete A} a b :  ( a   b)  b  a   a.
Proof. by rewrite auth_valid_discrete /= left_id. Qed.
139

140 141 142 143 144 145 146 147
Lemma authoritative_valid  x :  x   authoritative x.
Proof. by destruct x as [[[]|]]. Qed.
Lemma auth_own_valid `{CMRADiscrete A} x :  x   auth_own x.
Proof.
  rewrite auth_valid_discrete.
  destruct x as [[[]|]]; naive_solver eauto using cmra_valid_included.
Qed.

148
Lemma auth_cmra_mixin : CMRAMixin (auth A).
Robbert Krebbers's avatar
Robbert Krebbers committed
149
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
150 151
  apply cmra_total_mixin.
  - eauto.
152 153
  - by intros n x y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
  - by intros n y1 y2 [Hy Hy']; split; simpl; rewrite ?Hy ?Hy'.
154
  - intros n [x a] [y b] [Hx Ha]; simpl in *. rewrite !auth_validN_eq.
155
    destruct Hx as [?? Hx|]; first destruct Hx; intros ?; ofe_subst; auto.
156 157
  - intros [[[?|]|] ?]; rewrite /= ?auth_valid_eq
      ?auth_validN_eq /= ?cmra_included_includedN ?cmra_valid_validN;
158
      naive_solver eauto using O.
159
  - intros n [[[]|] ?]; rewrite !auth_validN_eq /=;
160
      naive_solver eauto using cmra_includedN_S, cmra_validN_S.
161 162
  - by split; simpl; rewrite assoc.
  - by split; simpl; rewrite comm.
Ralf Jung's avatar
Ralf Jung committed
163 164
  - by split; simpl; rewrite ?cmra_core_l.
  - by split; simpl; rewrite ?cmra_core_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  - intros ??; rewrite! auth_included; intros [??].
166
    by split; simpl; apply cmra_core_mono.
167
  - assert ( n (a b1 b2 : A), b1  b2 {n} a  b1 {n} a).
168
    { intros n a b1 b2 <-; apply cmra_includedN_l. }
169
   intros n [[[a1|]|] b1] [[[a2|]|] b2]; rewrite auth_validN_eq;
170
     naive_solver eauto using cmra_validN_op_l, cmra_validN_includedN.
171 172
  - intros n x y1 y2 ? [??]; simpl in *.
    destruct (cmra_extend n (authoritative x) (authoritative y1)
173
      (authoritative y2)) as (ea1&ea2&?&?&?); auto using authoritative_validN.
174
    destruct (cmra_extend n (auth_own x) (auth_own y1) (auth_own y2))
175 176
      as (b1&b2&?&?&?); auto using auth_own_validN.
    by exists (Auth ea1 b1), (Auth ea2 b2).
Robbert Krebbers's avatar
Robbert Krebbers committed
177
Qed.
178
Canonical Structure authR := CMRAT (auth A) auth_cmra_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
179

180
Global Instance auth_cmra_discrete : CMRADiscrete A  CMRADiscrete authR.
181 182
Proof.
  split; first apply _.
183
  intros [[[?|]|] ?]; rewrite auth_valid_eq auth_validN_eq /=; auto.
184 185 186 187
  - setoid_rewrite <-cmra_discrete_included_iff.
    rewrite -cmra_discrete_valid_iff. tauto.
  - by rewrite -cmra_discrete_valid_iff.
Qed.
188

189 190 191 192
Instance auth_empty : Empty (auth A) := Auth  .
Lemma auth_ucmra_mixin : UCMRAMixin (auth A).
Proof.
  split; simpl.
193
  - rewrite auth_valid_eq /=. apply ucmra_unit_valid.
194
  - by intros x; constructor; rewrite /= left_id.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
  - do 2 constructor; simpl; apply (persistent_core _).
196
Qed.
197
Canonical Structure authUR := UCMRAT (auth A) auth_ucmra_mixin.
198

Robbert Krebbers's avatar
Robbert Krebbers committed
199 200 201
Global Instance auth_frag_persistent a : Persistent a  Persistent ( a).
Proof. do 2 constructor; simpl; auto. by apply persistent_core. Qed.

202 203
(** Internalized properties *)
Lemma auth_equivI {M} (x y : auth A) :
204
  x  y  (authoritative x  authoritative y  auth_own x  auth_own y : uPred M).
205
Proof. by uPred.unseal. Qed.
206
Lemma auth_validI {M} (x : auth A) :
207
   x  (match authoritative x with
208 209
          | Excl' a => ( b, a  auth_own x  b)   a
          | None =>  auth_own x
210 211
          | ExclBot' => False
          end : uPred M).
Robbert Krebbers's avatar
Robbert Krebbers committed
212
Proof. uPred.unseal. by destruct x as [[[]|]]. Qed.
213

214
Lemma auth_frag_op a b :  (a  b) =  a   b.
Robbert Krebbers's avatar
Robbert Krebbers committed
215
Proof. done. Qed.
216 217
Lemma auth_frag_mono a b : a  b   a   b.
Proof. intros [c ->]. rewrite auth_frag_op. apply cmra_included_l. Qed.
218
Global Instance auth_frag_cmra_homomorphism : UCMRAHomomorphism (Auth None).
219 220 221 222
Proof. done. Qed.

Lemma auth_both_op a b : Auth (Excl' a) b   a   b.
Proof. by rewrite /op /auth_op /= left_id. Qed.
223 224
Lemma auth_auth_valid a :  a   ( a).
Proof. intros; split; simpl; auto using ucmra_unit_leastN. Qed.
225

226 227
Lemma auth_update a b a' b' :
  (a,b) ~l~> (a',b')   a   b ~~>  a'   b'.
228
Proof.
229 230 231 232 233
  intros Hup; apply cmra_total_update.
  move=> n [[[?|]|] bf1] // [[bf2 Ha] ?]; do 2 red; simpl in *.
  move: Ha; rewrite !left_id -assoc=> Ha.
  destruct (Hup n (Some (bf1  bf2))); auto.
  split; last done. exists bf2. by rewrite -assoc.
Ralf Jung's avatar
Ralf Jung committed
234
Qed.
235

236 237 238 239
Lemma auth_update_alloc a a' b' : (a,) ~l~> (a',b')   a ~~>  a'   b'.
Proof. intros. rewrite -(right_id _ _ ( a)). by apply auth_update. Qed.
Lemma auth_update_dealloc a b a' : (a,b) ~l~> (a',)   a   b ~~>  a'.
Proof. intros. rewrite -(right_id _ _ ( a')). by apply auth_update. Qed.
240 241 242 243 244

Lemma auth_local_update (a b0 b1 a' b0' b1': A) :
  (b0, b1) ~l~> (b0', b1')  b0'  a'   a' 
  ( a   b0,  a   b1) ~l~> ( a'   b0',  a'   b1').
Proof.
245 246 247 248 249 250 251
  rewrite !local_update_unital=> Hup ? ? n /=.
  move=> [[[ac|]|] bc] /auth_validN_2 [Le Val] [] /=;
    inversion_clear 1 as [?? Ha|]; inversion_clear Ha. (* need setoid_discriminate! *)
  rewrite !left_id=> ?.
  destruct (Hup n bc) as [Hval' Heq]; eauto using cmra_validN_includedN.
  rewrite -!auth_both_op auth_validN_eq /=.
  split_and!; [by apply cmra_included_includedN|by apply cmra_valid_validN|done].
252
Qed.
253 254
End cmra.

255
Arguments authR : clear implicits.
256
Arguments authUR : clear implicits.
Robbert Krebbers's avatar
Robbert Krebbers committed
257

258 259 260 261 262 263 264 265
(* Proof mode class instances *)
Instance from_op_auth_frag {A : ucmraT} (a b1 b2 : A) :
  FromOp a b1 b2  FromOp ( a) ( b1) ( b2).
Proof. done. Qed.
Instance into_op_auth_frag {A : ucmraT} (a b1 b2 : A) :
  IntoOp a b1 b2  IntoOp ( a) ( b1) ( b2).
Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
266
(* Functor *)
267
Definition auth_map {A B} (f : A  B) (x : auth A) : auth B :=
268
  Auth (excl_map f <$> authoritative x) (f (auth_own x)).
269
Lemma auth_map_id {A} (x : auth A) : auth_map id x = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
Proof. by destruct x as [[[]|]]. Qed.
271 272
Lemma auth_map_compose {A B C} (f : A  B) (g : B  C) (x : auth A) :
  auth_map (g  f) x = auth_map g (auth_map f x).
Robbert Krebbers's avatar
Robbert Krebbers committed
273
Proof. by destruct x as [[[]|]]. Qed.
274
Lemma auth_map_ext {A B : ofeT} (f g : A  B) x :
275
  ( x, f x  g x)  auth_map f x  auth_map g x.
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277
Proof.
  constructor; simpl; auto.
278
  apply option_fmap_equiv_ext=> a; by apply excl_map_ext.
Robbert Krebbers's avatar
Robbert Krebbers committed
279
Qed.
280
Instance auth_map_ne {A B : ofeT} n :
281
  Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@auth_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
282
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
283 284
  intros f g Hf [??] [??] [??]; split; simpl in *; [|by apply Hf].
  apply option_fmap_ne; [|done]=> x y ?; by apply excl_map_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
285
Qed.
286
Instance auth_map_cmra_monotone {A B : ucmraT} (f : A  B) :
287
  CMRAMonotone f  CMRAMonotone (auth_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
288
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
289
  split; try apply _.
290
  - intros n [[[a|]|] b]; rewrite !auth_validN_eq; try
291
      naive_solver eauto using cmra_monotoneN, cmra_monotone_validN.
Robbert Krebbers's avatar
Robbert Krebbers committed
292
  - by intros [x a] [y b]; rewrite !auth_included /=;
293
      intros [??]; split; simpl; apply: cmra_monotone.
Robbert Krebbers's avatar
Robbert Krebbers committed
294
Qed.
295
Definition authC_map {A B} (f : A -n> B) : authC A -n> authC B :=
296
  CofeMor (auth_map f).
297 298
Lemma authC_map_ne A B : NonExpansive (@authC_map A B).
Proof. intros n f f' Hf [[[a|]|] b]; repeat constructor; apply Hf. Qed.
Ralf Jung's avatar
Ralf Jung committed
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
Program Definition authRF (F : urFunctor) : rFunctor := {|
  rFunctor_car A B := authR (urFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
|}.
Next Obligation.
  by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
Qed.
Next Obligation.
  intros F A B x. rewrite /= -{2}(auth_map_id x).
  apply auth_map_ext=>y; apply urFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
  apply auth_map_ext=>y; apply urFunctor_compose.
Qed.

Instance authRF_contractive F :
  urFunctorContractive F  rFunctorContractive (authRF F).
Proof.
  by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
Qed.

322 323 324
Program Definition authURF (F : urFunctor) : urFunctor := {|
  urFunctor_car A B := authUR (urFunctor_car F A B);
  urFunctor_map A1 A2 B1 B2 fg := authC_map (urFunctor_map F fg)
Ralf Jung's avatar
Ralf Jung committed
325
|}.
326
Next Obligation.
327
  by intros F A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_ne.
328
Qed.
Ralf Jung's avatar
Ralf Jung committed
329
Next Obligation.
330
  intros F A B x. rewrite /= -{2}(auth_map_id x).
331
  apply auth_map_ext=>y; apply urFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
332 333
Qed.
Next Obligation.
334
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -auth_map_compose.
335
  apply auth_map_ext=>y; apply urFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
336
Qed.
337

338 339
Instance authURF_contractive F :
  urFunctorContractive F  urFunctorContractive (authURF F).
340
Proof.
341
  by intros ? A1 A2 B1 B2 n f g Hfg; apply authC_map_ne, urFunctor_contractive.
342
Qed.