namespaces.v 3.44 KB
Newer Older
1
2
From iris.prelude Require Export countable co_pset.
From iris.algebra Require Export base.
3
4

Definition namespace := list positive.
5
Definition nroot : namespace := nil.
6
7
8
9
Definition ndot `{Countable A} (N : namespace) (x : A) : namespace :=
  encode x :: N.
Coercion nclose (N : namespace) : coPset := coPset_suffixes (encode N).

Ralf Jung's avatar
Ralf Jung committed
10
11
Infix ".@" := ndot (at level 19, left associativity) : C_scope.
Notation "(.@)" := ndot (only parsing) : C_scope.
Ralf Jung's avatar
Ralf Jung committed
12

13
Instance ndot_inj `{Countable A} : Inj2 (=) (=) (=) (@ndot A _ _).
14
Proof. by intros N1 x1 N2 x2 ?; simplify_eq. Qed.
15
Lemma nclose_nroot : nclose nroot = .
16
17
18
Proof. by apply (sig_eq_pi _). Qed.
Lemma encode_nclose N : encode N  nclose N.
Proof. by apply elem_coPset_suffixes; exists xH; rewrite (left_id_L _ _). Qed.
Ralf Jung's avatar
Ralf Jung committed
19
Lemma nclose_subseteq `{Countable A} N x : nclose (N .@ x)  nclose N.
20
21
Proof.
  intros p; rewrite /nclose !elem_coPset_suffixes; intros [q ->].
Ralf Jung's avatar
Ralf Jung committed
22
  destruct (list_encode_suffix N (N .@ x)) as [q' ?]; [by exists [encode x]|].
23
24
  by exists (q ++ q')%positive; rewrite <-(assoc_L _); f_equal.
Qed.
Ralf Jung's avatar
Ralf Jung committed
25
Lemma ndot_nclose `{Countable A} N x : encode (N .@ x)  nclose N.
26
27
28
29
30
Proof. apply nclose_subseteq with x, encode_nclose. Qed.

Instance ndisjoint : Disjoint namespace := λ N1 N2,
   N1' N2', N1' `suffix_of` N1  N2' `suffix_of` N2 
             length N1' = length N2'  N1'  N2'.
31
Typeclasses Opaque ndisjoint.
32
33
34
35
36
37
38
39

Section ndisjoint.
  Context `{Countable A}.
  Implicit Types x y : A.

  Global Instance ndisjoint_comm : Comm iff ndisjoint.
  Proof. intros N1 N2. rewrite /disjoint /ndisjoint; naive_solver. Qed.

Ralf Jung's avatar
Ralf Jung committed
40
41
  Lemma ndot_ne_disjoint N (x y : A) : x  y  N .@ x  N .@ y.
  Proof. intros Hxy. exists (N .@ x), (N .@ y); naive_solver. Qed.
42

Ralf Jung's avatar
Ralf Jung committed
43
  Lemma ndot_preserve_disjoint_l N1 N2 x : N1  N2  N1 .@ x  N2.
44
45
  Proof.
    intros (N1' & N2' & Hpr1 & Hpr2 & Hl & Hne). exists N1', N2'.
46
    split_and?; try done; []. by apply suffix_of_cons_r.
47
48
  Qed.

Ralf Jung's avatar
Ralf Jung committed
49
  Lemma ndot_preserve_disjoint_r N1 N2 x : N1  N2  N1  N2 .@ x .
50
51
52
53
54
55
56
57
58
59
  Proof. rewrite ![N1  _]comm. apply ndot_preserve_disjoint_l. Qed.

  Lemma ndisj_disjoint N1 N2 : N1  N2  nclose N1  nclose N2 = .
  Proof.
    intros (N1' & N2' & [N1'' ->] & [N2'' ->] & Hl & Hne).
    apply elem_of_equiv_empty_L=> p; unfold nclose.
    rewrite elem_of_intersection !elem_coPset_suffixes; intros [[q ->] [q' Hq]].
    rewrite !list_encode_app !assoc in Hq.
    by eapply Hne, list_encode_suffix_eq.
  Qed.
60
61
62
End ndisjoint.

(* This tactic solves goals about inclusion and disjointness
63
   of masks (i.e., coPsets) with set_solver, taking
64
65
66
67
68
69
   disjointness of namespaces into account. *)
(* TODO: This tactic is by far now yet as powerful as it should be.
   For example, given N1 ⊥ N2, it should be able to solve
   nclose (ndot N1 x) ∩ N2 ≡ ∅. It should also solve
   (ndot N x) ∩ (ndot N y) ≡ ∅ if x ≠ y is in the context or
   follows from [discriminate]. *)
70
Ltac set_solver_ndisj :=
71
72
73
74
  repeat match goal with
         (* TODO: Restrict these to have type namespace *)
         | [ H : (?N1  ?N2) |-_ ] => apply ndisj_disjoint in H
         end;
75
  set_solver.
76
(* TODO: restrict this to match only if this is ⊆ of coPset *)
77
Hint Extern 500 (_  _) => set_solver_ndisj : ndisj.
78
79
80
81
82
83
(* The hope is that registering these will suffice to solve most goals
   of the form N1 ⊥ N2.
   TODO: Can this prove x ≠ y if discriminate can? *)
Hint Resolve ndot_ne_disjoint : ndisj.
Hint Resolve ndot_preserve_disjoint_l : ndisj.
Hint Resolve ndot_preserve_disjoint_r : ndisj.