lang.v 30.3 KB
Newer Older
1
From stdpp Require Export binders strings.
Ralf Jung's avatar
Ralf Jung committed
2
From stdpp Require Import gmap.
3 4 5
From iris.algebra Require Export ofe.
From iris.program_logic Require Export language ectx_language ectxi_language.
From iris.heap_lang Require Export locations.
6
Set Default Proof Using "Type".
7

Ralf Jung's avatar
Ralf Jung committed
8 9 10 11 12 13
(** heap_lang.  A fairly simple language used for common Iris examples.

- This is a right-to-left evaluated language, like CakeML and OCaml.  The reason
  for this is that it makes curried functions usable: Given a WP for [f a b], we
  know that any effects [f] might have to not matter until after *both* [a] and
  [b] are evaluated.  With left-to-right evaluation, that triple is basically
Ralf Jung's avatar
Ralf Jung committed
14
  useless unless the user let-expands [b].
Ralf Jung's avatar
Ralf Jung committed
15

16
- For prophecy variables, we annotate the reduction steps with an "observation"
17
  and tweak adequacy such that WP knows all future observations. There is
18
  another possible choice: Use non-deterministic choice when creating a prophecy
19 20
  variable ([NewProph]), and when resolving it ([Resolve]) make the
  program diverge unless the variable matches. That, however, requires an
21
  erasure proof that this endless loop does not make specifications useless.
Ralf Jung's avatar
Ralf Jung committed
22

23 24 25 26 27 28 29 30
The expression [Resolve e p v] attaches a prophecy resolution (for prophecy
variable [p] to value [v]) to the top-level head-reduction step of [e]. The
prophecy resolution happens simultaneously with the head-step being taken.
Furthermore, it is required that the head-step produces a value (otherwise
the [Resolve] is stuck), and this value is also attached to the resolution.
A prophecy variable is thus resolved to a pair containing (1) the result
value of the wrapped expression (called [e] above), and (2) the value that
was attached by the [Resolve] (called [v] above). This allows, for example,
31 32 33 34 35
to distinguish a resolution originating from a successful [CmpXchg] from one
originating from a failing [CmpXchg]. For example:
 - [Resolve (CmpXchg #l #n #(n+1)) #p v] will behave as [CmpXchg #l #n #(n+1)],
   which means step to a value-boole pair [(n', b)] while updating the heap, but
   in the meantime the prophecy variable [p] will be resolved to [(n', b), v)].
36 37 38 39 40 41 42 43
 - [Resolve (! #l) #p v] will behave as [! #l], that is return the value
   [w] pointed to by [l] on the heap (assuming it was allocated properly),
   but it will additionally resolve [p] to the pair [(w,v)].

Note that the sub-expressions of [Resolve e p v] (i.e., [e], [p] and [v])
are reduced as usual, from right to left. However, the evaluation of [e]
is restricted so that the head-step to which the resolution is attached
cannot be taken by the context. For example:
44 45
 - [Resolve (CmpXchg #l #n (#n + #1)) #p v] will first be reduced (with by a
   context-step) to [Resolve (CmpXchg #l #n #(n+1) #p v], and then behave as
46
   described above.
47
 - However, [Resolve ((λ: "n", CmpXchg #l "n" ("n" + #1)) #n) #p v] is stuck.
48 49 50 51 52
   Indeed, it can only be evaluated using a head-step (it is a β-redex),
   but the process does not yield a value.

The mechanism described above supports nesting [Resolve] expressions to
attach several prophecy resolutions to a head-redex. *)
Ralf Jung's avatar
Ralf Jung committed
53

54 55 56
Delimit Scope expr_scope with E.
Delimit Scope val_scope with V.

57
Module heap_lang.
58 59
Open Scope Z_scope.

60
(** Expressions and vals. *)
61
Definition proph_id := positive.
62

63
Inductive base_lit : Set :=
64
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit | LitErased
65
  | LitLoc (l : loc) | LitProphecy (p: proph_id).
66
Inductive un_op : Set :=
67
  | NegOp | MinusUnOp.
68
Inductive bin_op : Set :=
69 70 71
  | PlusOp | MinusOp | MultOp | QuotOp | RemOp (* Arithmetic *)
  | AndOp | OrOp | XorOp (* Bitwise *)
  | ShiftLOp | ShiftROp (* Shifts *)
Amin Timany's avatar
Amin Timany committed
72 73
  | LeOp | LtOp | EqOp (* Relations *)
  | OffsetOp. (* Pointer offset *)
74

75
Inductive expr :=
76 77
  (* Values *)
  | Val (v : val)
78
  (* Base lambda calculus *)
79 80 81
  | Var (x : string)
  | Rec (f x : binder) (e : expr)
  | App (e1 e2 : expr)
82
  (* Base types and their operations *)
83 84 85
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
86
  (* Products *)
87 88 89
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
90
  (* Sums *)
91 92 93
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : expr) (e2 : expr)
94
  (* Concurrency *)
95
  | Fork (e : expr)
96
  (* Heap *)
Amin Timany's avatar
Amin Timany committed
97
  | AllocN (e1 e2 : expr) (* array length (positive number), initial value *)
98 99
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
Ralf Jung's avatar
Ralf Jung committed
100
  | CmpXchg (e0 : expr) (e1 : expr) (e2 : expr) (* Compare-exchange *)
101
  | FAA (e1 : expr) (e2 : expr) (* Fetch-and-add *)
102 103
  (* Prophecy *)
  | NewProph
104
  | Resolve (e0 : expr) (e1 : expr) (e2 : expr) (* wrapped expr, proph, val *)
105
with val :=
106
  | LitV (l : base_lit)
107
  | RecV (f x : binder) (e : expr)
108 109
  | PairV (v1 v2 : val)
  | InjLV (v : val)
110
  | InjRV (v : val).
Ralf Jung's avatar
Ralf Jung committed
111

112
Bind Scope expr_scope with expr.
113 114
Bind Scope val_scope with val.

115 116 117
(** An observation associates a prophecy variable (identifier) to a pair of
values. The first value is the one that was returned by the (atomic) operation
during which the prophecy resolution happened (typically, a boolean when the
118
wrapped operation is a CmpXchg). The second value is the one that the prophecy
119 120
variable was actually resolved to. *)
Definition observation : Set := proph_id * (val * val).
121

122
Notation of_val := Val (only parsing).
123

124
Definition to_val (e : expr) : option val :=
125
  match e with
126
  | Val v => Some v
Ralf Jung's avatar
Ralf Jung committed
127
  | _ => None
128 129
  end.

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
(** We assume the following encoding of values to 64-bit words: The least 3
significant bits of every word are a "tag", and we have 61 bits of payload,
which is enough if all pointers are 8-byte-aligned (common on 64bit
architectures). The tags have the following meaning:

0: Payload is the data for a LitV (LitInt _).
1: Payload is the data for a InjLV (LitV (LitInt _)).
2: Payload is the data for a InjRV (LitV (LitInt _)).
3: Payload is the data for a LitV (LitLoc _).
4: Payload is the data for a InjLV (LitV (LitLoc _)).
4: Payload is the data for a InjRV (LitV (LitLoc _)).
6: Payload is one of the following finitely many values, which 61 bits are more
   than enough to encode:
   LitV LitUnit, InjLV (LitV LitUnit), InjRV (LitV LitUnit),
   LitV (LitBool _), InjLV (LitV (LitBool _)), InjRV (LitV (LitBool _)).
7: Value is boxed, i.e., payload is a pointer to some read-only memory area on
   the heap which stores whether this is a RecV, PairV, InjLV or InjRV and the
   relevant data for those cases. However, the boxed representation is never
   used if any of the above representations could be used.

Ignoring (as usual) the fact that we have to fit the infinite Z/loc into 61
bits, this means every value is machine-word-sized and can hence be atomically
read and written.  Also notice that the sets of boxed and unboxed values are
disjoint. *)
154 155
Definition lit_is_unboxed (l: base_lit) : Prop :=
  match l with
Ralf Jung's avatar
Ralf Jung committed
156 157
  (** Disallow comparing (erased) prophecies with (erased) prophecies, by
  considering them boxed. *)
158 159 160
  | LitProphecy _ | LitErased => False
  | _ => True
  end.
161 162
Definition val_is_unboxed (v : val) : Prop :=
  match v with
163 164 165
  | LitV l => lit_is_unboxed l
  | InjLV (LitV l) => lit_is_unboxed l
  | InjRV (LitV l) => lit_is_unboxed l
166 167 168
  | _ => False
  end.

169 170 171 172 173 174 175
Instance lit_is_unboxed_dec l : Decision (lit_is_unboxed l).
Proof. destruct l; simpl; exact (decide _). Defined.
Instance val_is_unboxed_dec v : Decision (val_is_unboxed v).
Proof. destruct v as [ | | | [] | [] ]; simpl; exact (decide _). Defined.

(** We just compare the word-sized representation of two values, without looking
into boxed data.  This works out fine if at least one of the to-be-compared
176 177
values is unboxed (exploiting the fact that an unboxed and a boxed value can
never be equal because these are disjoint sets). *)
178
Definition vals_compare_safe (vl v1 : val) : Prop :=
179
  val_is_unboxed vl  val_is_unboxed v1.
180
Arguments vals_compare_safe !_ !_ /.
181

182
(** The state: heaps of vals. *)
Ralf Jung's avatar
Ralf Jung committed
183 184
Record state : Type := {
  heap: gmap loc val;
185
  used_proph_id: gset proph_id;
Ralf Jung's avatar
Ralf Jung committed
186
}.
187

188 189
(** Equality and other typeclass stuff *)
Lemma to_of_val v : to_val (of_val v) = Some v.
190
Proof. by destruct v. Qed.
191 192

Lemma of_to_val e v : to_val e = Some v  of_val v = e.
193
Proof. destruct e=>//=. by intros [= <-]. Qed.
194 195

Instance of_val_inj : Inj (=) (=) of_val.
196
Proof. intros ??. congruence. Qed.
197

198
Instance base_lit_eq_dec : EqDecision base_lit.
199
Proof. solve_decision. Defined.
200
Instance un_op_eq_dec : EqDecision un_op.
201
Proof. solve_decision. Defined.
202
Instance bin_op_eq_dec : EqDecision bin_op.
203
Proof. solve_decision. Defined.
204
Instance expr_eq_dec : EqDecision expr.
205
Proof.
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  refine (
   fix go (e1 e2 : expr) {struct e1} : Decision (e1 = e2) :=
     match e1, e2 with
     | Val v, Val v' => cast_if (decide (v = v'))
     | Var x, Var x' => cast_if (decide (x = x'))
     | Rec f x e, Rec f' x' e' =>
        cast_if_and3 (decide (f = f')) (decide (x = x')) (decide (e = e'))
     | App e1 e2, App e1' e2' => cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
     | UnOp o e, UnOp o' e' => cast_if_and (decide (o = o')) (decide (e = e'))
     | BinOp o e1 e2, BinOp o' e1' e2' =>
        cast_if_and3 (decide (o = o')) (decide (e1 = e1')) (decide (e2 = e2'))
     | If e0 e1 e2, If e0' e1' e2' =>
        cast_if_and3 (decide (e0 = e0')) (decide (e1 = e1')) (decide (e2 = e2'))
     | Pair e1 e2, Pair e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
     | Fst e, Fst e' => cast_if (decide (e = e'))
     | Snd e, Snd e' => cast_if (decide (e = e'))
     | InjL e, InjL e' => cast_if (decide (e = e'))
     | InjR e, InjR e' => cast_if (decide (e = e'))
     | Case e0 e1 e2, Case e0' e1' e2' =>
        cast_if_and3 (decide (e0 = e0')) (decide (e1 = e1')) (decide (e2 = e2'))
     | Fork e, Fork e' => cast_if (decide (e = e'))
Amin Timany's avatar
Amin Timany committed
228 229
     | AllocN e1 e2, AllocN e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
230 231 232
     | Load e, Load e' => cast_if (decide (e = e'))
     | Store e1 e2, Store e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
233
     | CmpXchg e0 e1 e2, CmpXchg e0' e1' e2' =>
234 235 236 237
        cast_if_and3 (decide (e0 = e0')) (decide (e1 = e1')) (decide (e2 = e2'))
     | FAA e1 e2, FAA e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
     | NewProph, NewProph => left _
238 239
     | Resolve e0 e1 e2, Resolve e0' e1' e2' =>
        cast_if_and3 (decide (e0 = e0')) (decide (e1 = e1')) (decide (e2 = e2'))
240 241 242 243 244 245 246 247 248 249 250 251 252 253
     | _, _ => right _
     end
   with gov (v1 v2 : val) {struct v1} : Decision (v1 = v2) :=
     match v1, v2 with
     | LitV l, LitV l' => cast_if (decide (l = l'))
     | RecV f x e, RecV f' x' e' =>
        cast_if_and3 (decide (f = f')) (decide (x = x')) (decide (e = e'))
     | PairV e1 e2, PairV e1' e2' =>
        cast_if_and (decide (e1 = e1')) (decide (e2 = e2'))
     | InjLV e, InjLV e' => cast_if (decide (e = e'))
     | InjRV e, InjRV e' => cast_if (decide (e = e'))
     | _, _ => right _
     end
   for go); try (clear go gov; abstract intuition congruence).
254
Defined.
255 256
Instance val_eq_dec : EqDecision val.
Proof. solve_decision. Defined.
257

258 259 260
Instance base_lit_countable : Countable base_lit.
Proof.
 refine (inj_countable' (λ l, match l with
261 262 263 264 265 266
  | LitInt n => (inl (inl n), None)
  | LitBool b => (inl (inr b), None)
  | LitUnit => (inr (inl false), None)
  | LitErased => (inr (inl true), None)
  | LitLoc l => (inr (inr l), None)
  | LitProphecy p => (inr (inl false), Some p)
267
  end) (λ l, match l with
268 269 270 271 272
  | (inl (inl n), None) => LitInt n
  | (inl (inr b), None) => LitBool b
  | (inr (inl false), None) => LitUnit
  | (inr (inl true), None) => LitErased
  | (inr (inr l), None) => LitLoc l
273
  | (_, Some p) => LitProphecy p
274 275 276 277 278 279 280 281 282 283
  end) _); by intros [].
Qed.
Instance un_op_finite : Countable un_op.
Proof.
 refine (inj_countable' (λ op, match op with NegOp => 0 | MinusUnOp => 1 end)
  (λ n, match n with 0 => NegOp | _ => MinusUnOp end) _); by intros [].
Qed.
Instance bin_op_countable : Countable bin_op.
Proof.
 refine (inj_countable' (λ op, match op with
284 285
  | PlusOp => 0 | MinusOp => 1 | MultOp => 2 | QuotOp => 3 | RemOp => 4
  | AndOp => 5 | OrOp => 6 | XorOp => 7 | ShiftLOp => 8 | ShiftROp => 9
Amin Timany's avatar
Amin Timany committed
286
  | LeOp => 10 | LtOp => 11 | EqOp => 12 | OffsetOp => 13
287
  end) (λ n, match n with
288 289
  | 0 => PlusOp | 1 => MinusOp | 2 => MultOp | 3 => QuotOp | 4 => RemOp
  | 5 => AndOp | 6 => OrOp | 7 => XorOp | 8 => ShiftLOp | 9 => ShiftROp
Amin Timany's avatar
Amin Timany committed
290
  | 10 => LeOp | 11 => LtOp | 12 => EqOp | _ => OffsetOp
291 292 293 294
  end) _); by intros [].
Qed.
Instance expr_countable : Countable expr.
Proof.
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
 set (enc :=
   fix go e :=
     match e with
     | Val v => GenNode 0 [gov v]
     | Var x => GenLeaf (inl (inl x))
     | Rec f x e => GenNode 1 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); go e]
     | App e1 e2 => GenNode 2 [go e1; go e2]
     | UnOp op e => GenNode 3 [GenLeaf (inr (inr (inl op))); go e]
     | BinOp op e1 e2 => GenNode 4 [GenLeaf (inr (inr (inr op))); go e1; go e2]
     | If e0 e1 e2 => GenNode 5 [go e0; go e1; go e2]
     | Pair e1 e2 => GenNode 6 [go e1; go e2]
     | Fst e => GenNode 7 [go e]
     | Snd e => GenNode 8 [go e]
     | InjL e => GenNode 9 [go e]
     | InjR e => GenNode 10 [go e]
     | Case e0 e1 e2 => GenNode 11 [go e0; go e1; go e2]
     | Fork e => GenNode 12 [go e]
Amin Timany's avatar
Amin Timany committed
312
     | AllocN e1 e2 => GenNode 13 [go e1; go e2]
313 314
     | Load e => GenNode 14 [go e]
     | Store e1 e2 => GenNode 15 [go e1; go e2]
315
     | CmpXchg e0 e1 e2 => GenNode 16 [go e0; go e1; go e2]
316 317
     | FAA e1 e2 => GenNode 17 [go e1; go e2]
     | NewProph => GenNode 18 []
318
     | Resolve e0 e1 e2 => GenNode 19 [go e0; go e1; go e2]
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
     end
   with gov v :=
     match v with
     | LitV l => GenLeaf (inr (inl l))
     | RecV f x e =>
        GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); go e]
     | PairV v1 v2 => GenNode 1 [gov v1; gov v2]
     | InjLV v => GenNode 2 [gov v]
     | InjRV v => GenNode 3 [gov v]
     end
   for go).
 set (dec :=
   fix go e :=
     match e with
     | GenNode 0 [v] => Val (gov v)
     | GenLeaf (inl (inl x)) => Var x
     | GenNode 1 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); e] => Rec f x (go e)
     | GenNode 2 [e1; e2] => App (go e1) (go e2)
     | GenNode 3 [GenLeaf (inr (inr (inl op))); e] => UnOp op (go e)
     | GenNode 4 [GenLeaf (inr (inr (inr op))); e1; e2] => BinOp op (go e1) (go e2)
     | GenNode 5 [e0; e1; e2] => If (go e0) (go e1) (go e2)
     | GenNode 6 [e1; e2] => Pair (go e1) (go e2)
     | GenNode 7 [e] => Fst (go e)
     | GenNode 8 [e] => Snd (go e)
     | GenNode 9 [e] => InjL (go e)
     | GenNode 10 [e] => InjR (go e)
     | GenNode 11 [e0; e1; e2] => Case (go e0) (go e1) (go e2)
     | GenNode 12 [e] => Fork (go e)
Amin Timany's avatar
Amin Timany committed
347
     | GenNode 13 [e1; e2] => AllocN (go e1) (go e2)
348 349
     | GenNode 14 [e] => Load (go e)
     | GenNode 15 [e1; e2] => Store (go e1) (go e2)
350
     | GenNode 16 [e0; e1; e2] => CmpXchg (go e0) (go e1) (go e2)
351 352
     | GenNode 17 [e1; e2] => FAA (go e1) (go e2)
     | GenNode 18 [] => NewProph
353
     | GenNode 19 [e0; e1; e2] => Resolve (go e0) (go e1) (go e2)
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
     | _ => Val $ LitV LitUnit (* dummy *)
     end
   with gov v :=
     match v with
     | GenLeaf (inr (inl l)) => LitV l
     | GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); e] => RecV f x (go e)
     | GenNode 1 [v1; v2] => PairV (gov v1) (gov v2)
     | GenNode 2 [v] => InjLV (gov v)
     | GenNode 3 [v] => InjRV (gov v)
     | _ => LitV LitUnit (* dummy *)
     end
   for go).
 refine (inj_countable' enc dec _).
 refine (fix go (e : expr) {struct e} := _ with gov (v : val) {struct v} := _ for go).
 - destruct e as [v| | | | | | | | | | | | | | | | | | | |]; simpl; f_equal;
     [exact (gov v)|done..].
 - destruct v; by f_equal.
371 372 373 374
Qed.
Instance val_countable : Countable val.
Proof. refine (inj_countable of_val to_val _); auto using to_of_val. Qed.

Ralf Jung's avatar
Ralf Jung committed
375
Instance state_inhabited : Inhabited state :=
376
  populate {| heap := inhabitant; used_proph_id := inhabitant |}.
377
Instance val_inhabited : Inhabited val := populate (LitV LitUnit).
378
Instance expr_inhabited : Inhabited expr := populate (Val inhabitant).
379

380 381 382 383
Canonical Structure stateO := leibnizO state.
Canonical Structure locO := leibnizO loc.
Canonical Structure valO := leibnizO val.
Canonical Structure exprO := leibnizO expr.
384

385
(** Evaluation contexts *)
386
Inductive ectx_item :=
387 388
  | AppLCtx (v2 : val)
  | AppRCtx (e1 : expr)
389
  | UnOpCtx (op : un_op)
390 391
  | BinOpLCtx (op : bin_op) (v2 : val)
  | BinOpRCtx (op : bin_op) (e1 : expr)
392
  | IfCtx (e1 e2 : expr)
393 394
  | PairLCtx (v2 : val)
  | PairRCtx (e1 : expr)
395 396 397 398
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
399
  | CaseCtx (e1 : expr) (e2 : expr)
Amin Timany's avatar
Amin Timany committed
400 401
  | AllocNLCtx (v2 : val)
  | AllocNRCtx (e1 : expr)
402
  | LoadCtx
403 404
  | StoreLCtx (v2 : val)
  | StoreRCtx (e1 : expr)
405 406 407
  | CmpXchgLCtx (v1 : val) (v2 : val)
  | CmpXchgMCtx (e0 : expr) (v2 : val)
  | CmpXchgRCtx (e0 : expr) (e1 : expr)
408
  | FaaLCtx (v2 : val)
409
  | FaaRCtx (e1 : expr)
410 411 412 413 414 415 416 417
  | ResolveLCtx (ctx : ectx_item) (v1 : val) (v2 : val)
  | ResolveMCtx (e0 : expr) (v2 : val)
  | ResolveRCtx (e0 : expr) (e1 : expr).

(** Contextual closure will only reduce [e] in [Resolve e (Val _) (Val _)] if
the local context of [e] is non-empty. As a consequence, the first argument of
[Resolve] is not completely evaluated (down to a value) by contextual closure:
no head steps (i.e., surface reductions) are taken. This means that contextual
418 419
closure will reduce [Resolve (CmpXchg #l #n (#n + #1)) #p #v] into [Resolve
(CmpXchg #l #n #(n+1)) #p #v], but it cannot context-step any further. *)
420 421

Fixpoint fill_item (Ki : ectx_item) (e : expr) : expr :=
422
  match Ki with
423 424
  | AppLCtx v2 => App e (of_val v2)
  | AppRCtx e1 => App e1 e
425
  | UnOpCtx op => UnOp op e
426
  | BinOpLCtx op v2 => BinOp op e (Val v2)
427
  | BinOpRCtx op e1 => BinOp op e1 e
428
  | IfCtx e1 e2 => If e e1 e2
429
  | PairLCtx v2 => Pair e (Val v2)
430
  | PairRCtx e1 => Pair e1 e
431 432 433 434
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
435
  | CaseCtx e1 e2 => Case e e1 e2
Amin Timany's avatar
Amin Timany committed
436 437
  | AllocNLCtx v2 => AllocN e (Val v2)
  | AllocNRCtx e1 => AllocN e1 e
438
  | LoadCtx => Load e
439
  | StoreLCtx v2 => Store e (Val v2)
440
  | StoreRCtx e1 => Store e1 e
441 442 443
  | CmpXchgLCtx v1 v2 => CmpXchg e (Val v1) (Val v2)
  | CmpXchgMCtx e0 v2 => CmpXchg e0 e (Val v2)
  | CmpXchgRCtx e0 e1 => CmpXchg e0 e1 e
444
  | FaaLCtx v2 => FAA e (Val v2)
445
  | FaaRCtx e1 => FAA e1 e
446 447 448
  | ResolveLCtx K v1 v2 => Resolve (fill_item K e) (Val v1) (Val v2)
  | ResolveMCtx ex v2 => Resolve ex e (Val v2)
  | ResolveRCtx ex e1 => Resolve ex e1 e
Ralf Jung's avatar
Ralf Jung committed
449 450
  end.

451
(** Substitution *)
452
Fixpoint subst (x : string) (v : val) (e : expr)  : expr :=
453
  match e with
454 455
  | Val _ => e
  | Var y => if decide (x = y) then Val v else Var y
456
  | Rec f y e =>
457 458 459 460 461 462 463 464 465 466 467 468
     Rec f y $ if decide (BNamed x  f  BNamed x  y) then subst x v e else e
  | App e1 e2 => App (subst x v e1) (subst x v e2)
  | UnOp op e => UnOp op (subst x v e)
  | BinOp op e1 e2 => BinOp op (subst x v e1) (subst x v e2)
  | If e0 e1 e2 => If (subst x v e0) (subst x v e1) (subst x v e2)
  | Pair e1 e2 => Pair (subst x v e1) (subst x v e2)
  | Fst e => Fst (subst x v e)
  | Snd e => Snd (subst x v e)
  | InjL e => InjL (subst x v e)
  | InjR e => InjR (subst x v e)
  | Case e0 e1 e2 => Case (subst x v e0) (subst x v e1) (subst x v e2)
  | Fork e => Fork (subst x v e)
Amin Timany's avatar
Amin Timany committed
469
  | AllocN e1 e2 => AllocN (subst x v e1) (subst x v e2)
470 471
  | Load e => Load (subst x v e)
  | Store e1 e2 => Store (subst x v e1) (subst x v e2)
472
  | CmpXchg e0 e1 e2 => CmpXchg (subst x v e0) (subst x v e1) (subst x v e2)
473
  | FAA e1 e2 => FAA (subst x v e1) (subst x v e2)
474
  | NewProph => NewProph
475
  | Resolve ex e1 e2 => Resolve (subst x v ex) (subst x v e1) (subst x v e2)
476
  end.
477

478 479
Definition subst' (mx : binder) (v : val) : expr  expr :=
  match mx with BNamed x => subst x v | BAnon => id end.
480

481
(** The stepping relation *)
482 483 484
Definition un_op_eval (op : un_op) (v : val) : option val :=
  match op, v with
  | NegOp, LitV (LitBool b) => Some $ LitV $ LitBool (negb b)
485
  | NegOp, LitV (LitInt n) => Some $ LitV $ LitInt (Z.lnot n)
486
  | MinusUnOp, LitV (LitInt n) => Some $ LitV $ LitInt (- n)
487 488 489
  | _, _ => None
  end.

Amin Timany's avatar
Amin Timany committed
490
Definition bin_op_eval_int (op : bin_op) (n1 n2 : Z) : option base_lit :=
491
  match op with
Amin Timany's avatar
Amin Timany committed
492 493 494 495 496 497 498 499 500 501 502 503 504 505
  | PlusOp => Some $ LitInt (n1 + n2)
  | MinusOp => Some $ LitInt (n1 - n2)
  | MultOp => Some $ LitInt (n1 * n2)
  | QuotOp => Some $ LitInt (n1 `quot` n2)
  | RemOp => Some $ LitInt (n1 `rem` n2)
  | AndOp => Some $ LitInt (Z.land n1 n2)
  | OrOp => Some $ LitInt (Z.lor n1 n2)
  | XorOp => Some $ LitInt (Z.lxor n1 n2)
  | ShiftLOp => Some $ LitInt (n1  n2)
  | ShiftROp => Some $ LitInt (n1  n2)
  | LeOp => Some $ LitBool (bool_decide (n1  n2))
  | LtOp => Some $ LitBool (bool_decide (n1 < n2))
  | EqOp => Some $ LitBool (bool_decide (n1 = n2))
  | OffsetOp => None (* Pointer arithmetic *)
506 507 508 509 510 511 512 513 514 515 516
  end.

Definition bin_op_eval_bool (op : bin_op) (b1 b2 : bool) : option base_lit :=
  match op with
  | PlusOp | MinusOp | MultOp | QuotOp | RemOp => None (* Arithmetic *)
  | AndOp => Some (LitBool (b1 && b2))
  | OrOp => Some (LitBool (b1 || b2))
  | XorOp => Some (LitBool (xorb b1 b2))
  | ShiftLOp | ShiftROp => None (* Shifts *)
  | LeOp | LtOp => None (* InEquality *)
  | EqOp => Some (LitBool (bool_decide (b1 = b2)))
Amin Timany's avatar
Amin Timany committed
517
  | OffsetOp => None (* Pointer arithmetic *)
518 519
  end.

520
Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val :=
521
  if decide (op = EqOp) then
522
    (* Crucially, this compares the same way as [CmpXchg]! *)
523
    if decide (vals_compare_safe v1 v2) then
524 525 526
      Some $ LitV $ LitBool $ bool_decide (v1 = v2)
    else
      None
527 528 529 530 531 532 533
  else
    match v1, v2 with
    | LitV (LitInt n1), LitV (LitInt n2) => LitV <$> bin_op_eval_int op n1 n2
    | LitV (LitBool b1), LitV (LitBool b2) => LitV <$> bin_op_eval_bool op b1 b2
    | LitV (LitLoc l), LitV (LitInt off) => Some $ LitV $ LitLoc (l + off)
    | _, _ => None
    end.
Ralf Jung's avatar
Ralf Jung committed
534

Ralf Jung's avatar
Ralf Jung committed
535
Definition state_upd_heap (f: gmap loc val  gmap loc val) (σ: state) : state :=
536
  {| heap := f σ.(heap); used_proph_id := σ.(used_proph_id) |}.
Ralf Jung's avatar
Ralf Jung committed
537
Arguments state_upd_heap _ !_ /.
Amin Timany's avatar
Amin Timany committed
538

Ralf Jung's avatar
Ralf Jung committed
539
Definition state_upd_used_proph_id (f: gset proph_id  gset proph_id) (σ: state) : state :=
540 541
  {| heap := σ.(heap); used_proph_id := f σ.(used_proph_id) |}.
Arguments state_upd_used_proph_id _ !_ /.
Ralf Jung's avatar
Ralf Jung committed
542

Amin Timany's avatar
Amin Timany committed
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
Fixpoint heap_array (l : loc) (vs : list val) : gmap loc val :=
  match vs with
  | [] => 
  | v :: vs' => {[l := v]}  heap_array (l + 1) vs'
  end.

Lemma heap_array_singleton l v : heap_array l [v] = {[l := v]}.
Proof. by rewrite /heap_array right_id. Qed.

Lemma heap_array_lookup l vs w k :
  heap_array l vs !! k = Some w 
   j, 0  j  k = l + j  vs !! (Z.to_nat j) = Some w.
Proof.
  revert k l; induction vs as [|v' vs IH]=> l' l /=.
  { rewrite lookup_empty. naive_solver lia. }
  rewrite -insert_union_singleton_l lookup_insert_Some IH. split.
  - intros [[-> ->] | (Hl & j & ? & -> & ?)].
    { exists 0. rewrite loc_add_0. naive_solver lia. }
    exists (1 + j). rewrite loc_add_assoc !Z.add_1_l Z2Nat.inj_succ; auto with lia.
  - intros (j & ? & -> & Hil). destruct (decide (j = 0)); simplify_eq/=.
    { rewrite loc_add_0; eauto. }
    right. split.
    { rewrite -{1}(loc_add_0 l). intros ?%(inj _); lia. }
    assert (Z.to_nat j = S (Z.to_nat (j - 1))) as Hj.
    { rewrite -Z2Nat.inj_succ; last lia. f_equal; lia. }
    rewrite Hj /= in Hil.
    exists (j - 1). rewrite loc_add_assoc Z.add_sub_assoc Z.add_simpl_l.
    auto with lia.
Qed.

Lemma heap_array_map_disjoint (h : gmap loc val) (l : loc) (vs : list val) :
  ( i, (0  i)  (i < length vs)  h !! (l + i) = None) 
  (heap_array l vs) ## h.
Proof.
  intros Hdisj. apply map_disjoint_spec=> l' v1 v2.
  intros (j&?&->&Hj%lookup_lt_Some%inj_lt)%heap_array_lookup.
  move: Hj. rewrite Z2Nat.id // => ?. by rewrite Hdisj.
Qed.

582
(* [h] is added on the right here to make [state_init_heap_singleton] true. *)
Amin Timany's avatar
Amin Timany committed
583
Definition state_init_heap (l : loc) (n : Z) (v : val) (σ : state) : state :=
584 585 586 587 588 589 590 591
  state_upd_heap (λ h, heap_array l (replicate (Z.to_nat n) v)  h) σ.

Lemma state_init_heap_singleton l v σ :
  state_init_heap l 1 v σ = state_upd_heap <[l:=v]> σ.
Proof.
  destruct σ as [h p]. rewrite /state_init_heap /=. f_equiv.
  rewrite right_id insert_union_singleton_l. done.
Qed.
Amin Timany's avatar
Amin Timany committed
592

593
Inductive head_step : expr  state  list observation  expr  state  list expr  Prop :=
594 595 596 597 598 599 600 601 602 603 604 605
  | RecS f x e σ :
     head_step (Rec f x e) σ [] (Val $ RecV f x e) σ []
  | PairS v1 v2 σ :
     head_step (Pair (Val v1) (Val v2)) σ [] (Val $ PairV v1 v2) σ []
  | InjLS v σ :
     head_step (InjL $ Val v) σ [] (Val $ InjLV v) σ []
  | InjRS v σ :
     head_step (InjR $ Val v) σ [] (Val $ InjRV v) σ []
  | BetaS f x e1 v2 e' σ :
     e' = subst' x v2 (subst' f (RecV f x e1) e1) 
     head_step (App (Val $ RecV f x e1) (Val v2)) σ [] e' σ []
  | UnOpS op v v' σ :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
606
     un_op_eval op v = Some v' 
607 608
     head_step (UnOp op (Val v)) σ [] (Val v') σ []
  | BinOpS op v1 v2 v' σ :
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
609
     bin_op_eval op v1 v2 = Some v' 
610
     head_step (BinOp op (Val v1) (Val v2)) σ [] (Val v') σ []
611
  | IfTrueS e1 e2 σ :
612
     head_step (If (Val $ LitV $ LitBool true) e1 e2) σ [] e1 σ []
613
  | IfFalseS e1 e2 σ :
614 615 616 617 618 619 620 621 622
     head_step (If (Val $ LitV $ LitBool false) e1 e2) σ [] e2 σ []
  | FstS v1 v2 σ :
     head_step (Fst (Val $ PairV v1 v2)) σ [] (Val v1) σ []
  | SndS v1 v2 σ :
     head_step (Snd (Val $ PairV v1 v2)) σ [] (Val v2) σ []
  | CaseLS v e1 e2 σ :
     head_step (Case (Val $ InjLV v) e1 e2) σ [] (App e1 (Val v)) σ []
  | CaseRS v e1 e2 σ :
     head_step (Case (Val $ InjRV v) e1 e2) σ [] (App e2 (Val v)) σ []
623
  | ForkS e σ:
624
     head_step (Fork e) σ [] (Val $ LitV LitUnit) σ [e]
Amin Timany's avatar
Amin Timany committed
625 626 627 628
  | AllocNS n v σ l :
     0 < n 
     ( i, 0  i  i < n  σ.(heap) !! (l + i) = None) 
     head_step (AllocN (Val $ LitV $ LitInt n) (Val v)) σ
629
               []
Amin Timany's avatar
Amin Timany committed
630
               (Val $ LitV $ LitLoc l) (state_init_heap l n v σ)
Ralf Jung's avatar
Ralf Jung committed
631
               []
632
  | LoadS l v σ :
Ralf Jung's avatar
Ralf Jung committed
633
     σ.(heap) !! l = Some v 
634 635 636 637
     head_step (Load (Val $ LitV $ LitLoc l)) σ [] (of_val v) σ []
  | StoreS l v σ :
     is_Some (σ.(heap) !! l) 
     head_step (Store (Val $ LitV $ LitLoc l) (Val v)) σ
638
               []
639
               (Val $ LitV LitUnit) (state_upd_heap <[l:=v]> σ)
Ralf Jung's avatar
Ralf Jung committed
640
               []
641
  | CmpXchgS l v1 v2 vl σ b :
642
     σ.(heap) !! l = Some vl 
643
     (* Crucially, this compares the same way as [EqOp]! *)
644 645
     vals_compare_safe vl v1 
     b = bool_decide (vl = v1) 
646
     head_step (CmpXchg (Val $ LitV $ LitLoc l) (Val v1) (Val v2)) σ
647
               []
648
               (Val $ PairV vl (LitV $ LitBool b)) (if b then state_upd_heap <[l:=v2]> σ else σ)
Ralf Jung's avatar
Ralf Jung committed
649
               []
650
  | FaaS l i1 i2 σ :
Ralf Jung's avatar
Ralf Jung committed
651
     σ.(heap) !! l = Some (LitV (LitInt i1)) 
652
     head_step (FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2)) σ
653
               []
654
               (Val $ LitV $ LitInt i1) (state_upd_heap <[l:=LitV (LitInt (i1 + i2))]>σ)
Ralf Jung's avatar
Ralf Jung committed
655
               []
656
  | NewProphS σ p :
657
     p  σ.(used_proph_id) 
Ralf Jung's avatar
Ralf Jung committed
658
     head_step NewProph σ
659
               []
660
               (Val $ LitV $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} ) σ)
Ralf Jung's avatar
Ralf Jung committed
661
               []
662 663 664 665
  | ResolveS p v e σ w σ' κs ts :
     head_step e σ κs (Val v) σ' ts 
     head_step (Resolve e (Val $ LitV $ LitProphecy p) (Val w)) σ
               (κs ++ [(p, (v, w))]) (Val v) σ' ts.
Ralf Jung's avatar
Ralf Jung committed
666

667
(** Basic properties about the language *)
668
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
669
Proof. induction Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
670

671 672
Lemma fill_item_val Ki e :
  is_Some (to_val (fill_item Ki e))  is_Some (to_val e).
673
Proof. intros [v ?]. induction Ki; simplify_option_eq; eauto. Qed.
674

675
Lemma val_head_stuck e1 σ1 κ e2 σ2 efs : head_step e1 σ1 κ e2 σ2 efs  to_val e1 = None.
676
Proof. destruct 1; naive_solver. Qed.
677

678 679
Lemma head_ctx_step_val Ki e σ1 κ e2 σ2 efs :
  head_step (fill_item Ki e) σ1 κ e2 σ2 efs  is_Some (to_val e).
680
Proof. revert κ e2. induction Ki; inversion_clear 1; simplify_option_eq; eauto. Qed.
681

682
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
683
  to_val e1 = None  to_val e2 = None 
684
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
685
Proof. revert Ki1. induction Ki2, Ki1; naive_solver eauto with f_equal. Qed.
686

Amin Timany's avatar
Amin Timany committed
687
Lemma alloc_fresh v n σ :
688
  let l := fresh_locs (dom (gset loc) σ.(heap)) in
Amin Timany's avatar
Amin Timany committed
689 690 691 692 693 694 695 696 697
  0 < n 
  head_step (AllocN ((Val $ LitV $ LitInt $ n)) (Val v)) σ []
            (Val $ LitV $ LitLoc l) (state_init_heap l n v σ) [].
Proof.
  intros.
  apply AllocNS; first done.
  intros. apply (not_elem_of_dom (D := gset loc)).
  by apply fresh_locs_fresh.
Qed.
698

699 700
Lemma new_proph_id_fresh σ :
  let p := fresh σ.(used_proph_id) in
701
  head_step NewProph σ [] (Val $ LitV $ LitProphecy p) (state_upd_used_proph_id ({[ p ]} ) σ) [].
702 703
Proof. constructor. apply is_fresh. Qed.

704 705 706 707 708
Lemma heap_lang_mixin : EctxiLanguageMixin of_val to_val fill_item head_step.
Proof.
  split; apply _ || eauto using to_of_val, of_to_val, val_head_stuck,
    fill_item_val, fill_item_no_val_inj, head_ctx_step_val.
Qed.
709 710 711
End heap_lang.

(** Language *)
712 713 714
Canonical Structure heap_ectxi_lang := EctxiLanguage heap_lang.heap_lang_mixin.
Canonical Structure heap_ectx_lang := EctxLanguageOfEctxi heap_ectxi_lang.
Canonical Structure heap_lang := LanguageOfEctx heap_ectx_lang.
715

716
(* Prefer heap_lang names over ectx_language names. *)
717
Export heap_lang.
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
(* The following lemma is not provable using the axioms of [ectxi_language].
The proof requires a case analysis over context items ([destruct i] on the
last line), which in all cases yields a non-value. To prove this lemma for
[ectxi_language] in general, we would require that a term of the form
[fill_item i e] is never a value. *)
Lemma to_val_fill_some K e v : to_val (fill K e) = Some v  K = []  e = Val v.
Proof.
  intro H. destruct K as [|Ki K]; first by apply of_to_val in H. exfalso.
  assert (to_val e  None) as He.
  { intro A. by rewrite fill_not_val in H. }
  assert ( w, e = Val w) as [w ->].
  { destruct e; try done; eauto. }
  assert (to_val (fill (Ki :: K) (Val w)) = None).
  { destruct Ki; simpl; apply fill_not_val; done. }
  by simplify_eq.
Qed.

Lemma prim_step_to_val_is_head_step e σ1 κs w σ2 efs :
  prim_step e σ1 κs (Val w) σ2 efs  head_step e σ1 κs (Val w) σ2 efs.
Proof.
  intro H. destruct H as [K e1 e2 H1 H2].
  assert (to_val (fill K e2) = Some w) as H3; first by rewrite -H2.
  apply to_val_fill_some in H3 as [-> ->]. subst e. done.
Qed.

Lemma irreducible_resolve e v1 v2 σ :
  irreducible e σ  irreducible (Resolve e (Val v1) (Val v2)) σ.
Proof.
  intros H κs ** [Ks e1' e2' Hfill -> step]. simpl in *.
  induction Ks as [|K Ks _] using rev_ind; simpl in Hfill.
  - subst e1'. inversion step. eapply H. by apply head_prim_step.
  - rewrite fill_app /= in Hfill.
    destruct K; (inversion Hfill; subst; clear Hfill; try
      match goal with | H : Val ?v = fill Ks ?e |- _ =>
        (assert (to_val (fill Ks e) = Some v) as HEq by rewrite -H //);
        apply to_val_fill_some in HEq; destruct HEq as [-> ->]; inversion step
      end).
    apply (H κs (fill_item K (foldl (flip fill_item) e2' Ks)) σ' efs).
    econstructor 1 with (K := Ks ++ [K]); last done; simpl; by rewrite fill_app.
Qed.