interface.v 20.6 KB
Newer Older
1
From iris.bi Require Export notation.
2
From iris.algebra Require Export ofe.
3
Set Primitive Projections.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5

Section bi_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
6
  Context {PROP : Type} `{Dist PROP, Equiv PROP}.
Robbert Krebbers's avatar
Robbert Krebbers committed
7 8 9 10 11 12 13 14 15 16 17
  Context (bi_entails : PROP  PROP  Prop).
  Context (bi_emp : PROP).
  Context (bi_pure : Prop  PROP).
  Context (bi_and : PROP  PROP  PROP).
  Context (bi_or : PROP  PROP  PROP).
  Context (bi_impl : PROP  PROP  PROP).
  Context (bi_forall :  A, (A  PROP)  PROP).
  Context (bi_exist :  A, (A  PROP)  PROP).
  Context (bi_sep : PROP  PROP  PROP).
  Context (bi_wand : PROP  PROP  PROP).
  Context (bi_persistently : PROP  PROP).
18
  Context (sbi_internal_eq :  A : ofeT, A  A  PROP).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
19
  Context (sbi_later : PROP  PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
20 21 22 23 24

  Local Infix "⊢" := bi_entails.
  Local Notation "'emp'" := bi_emp.
  Local Notation "'True'" := (bi_pure True).
  Local Notation "'False'" := (bi_pure False).
25
  Local Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp).
Robbert Krebbers's avatar
Robbert Krebbers committed
26 27 28 29 30 31 32 33 34
  Local Infix "∧" := bi_and.
  Local Infix "∨" := bi_or.
  Local Infix "→" := bi_impl.
  Local Notation "∀ x .. y , P" :=
    (bi_forall _ (λ x, .. (bi_forall _ (λ y, P)) ..)).
  Local Notation "∃ x .. y , P" :=
    (bi_exist _ (λ x, .. (bi_exist _ (λ y, P)) ..)).
  Local Infix "∗" := bi_sep.
  Local Infix "-∗" := bi_wand.
35
  Local Notation "'<pers>' P" := (bi_persistently P).
36
  Local Notation "x ≡ y" := (sbi_internal_eq _ x y).
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
37
  Local Notation "▷ P" := (sbi_later P).
Robbert Krebbers's avatar
Robbert Krebbers committed
38

Ralf Jung's avatar
Ralf Jung committed
39 40 41 42 43 44
  (** * Axioms for a general BI (logic of bunched implications) *)

  (** The following axioms are satisifed by both affine and linear BIs, and BIs
  that combine both kinds of resources. In particular, we have an "ordered RA"
  model satisfying all these axioms. For this model, we extend RAs with an
  arbitrary partial order, and up-close resources wrt. that order (instead of
45
  extension order).  We demand composition to be monotone wrt. the order: [x1 ≼
46 47 48
  x2 → x1 ⋅ y ≼ x2 ⋅ y].  We define [emp := λ r, ε ≼ r]; persistently is still
  defined with the core: [persistently P := λ r, P (core r)].  This is uplcosed
  because the core is monotone.  *)
Ralf Jung's avatar
Ralf Jung committed
49

50
  Record BiMixin := {
Robbert Krebbers's avatar
Robbert Krebbers committed
51 52 53
    bi_mixin_entails_po : PreOrder bi_entails;
    bi_mixin_equiv_spec P Q : equiv P Q  (P  Q)  (Q  P);

54
    (** Non-expansiveness *)
Robbert Krebbers's avatar
Robbert Krebbers committed
55 56 57 58 59 60 61 62 63 64 65 66
    bi_mixin_pure_ne n : Proper (iff ==> dist n) bi_pure;
    bi_mixin_and_ne : NonExpansive2 bi_and;
    bi_mixin_or_ne : NonExpansive2 bi_or;
    bi_mixin_impl_ne : NonExpansive2 bi_impl;
    bi_mixin_forall_ne A n :
      Proper (pointwise_relation _ (dist n) ==> dist n) (bi_forall A);
    bi_mixin_exist_ne A n :
      Proper (pointwise_relation _ (dist n) ==> dist n) (bi_exist A);
    bi_mixin_sep_ne : NonExpansive2 bi_sep;
    bi_mixin_wand_ne : NonExpansive2 bi_wand;
    bi_mixin_persistently_ne : NonExpansive bi_persistently;

67
    (** Higher-order logic *)
68
    bi_mixin_pure_intro (φ : Prop) P : φ  P   φ ;
Robbert Krebbers's avatar
Robbert Krebbers committed
69
    bi_mixin_pure_elim' (φ : Prop) P : (φ  True  P)   φ   P;
70 71
    (* This is actually derivable if we assume excluded middle in Coq,
       via [(∀ a, φ a) ∨ (∃ a, ¬φ a)]. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    bi_mixin_pure_forall_2 {A} (φ : A  Prop) : ( a,  φ a )    a, φ a ;

    bi_mixin_and_elim_l P Q : P  Q  P;
    bi_mixin_and_elim_r P Q : P  Q  Q;
    bi_mixin_and_intro P Q R : (P  Q)  (P  R)  P  Q  R;

    bi_mixin_or_intro_l P Q : P  P  Q;
    bi_mixin_or_intro_r P Q : Q  P  Q;
    bi_mixin_or_elim P Q R : (P  R)  (Q  R)  P  Q  R;

    bi_mixin_impl_intro_r P Q R : (P  Q  R)  P  Q  R;
    bi_mixin_impl_elim_l' P Q R : (P  Q  R)  P  Q  R;

    bi_mixin_forall_intro {A} P (Ψ : A  PROP) : ( a, P  Ψ a)  P   a, Ψ a;
    bi_mixin_forall_elim {A} {Ψ : A  PROP} a : ( a, Ψ a)  Ψ a;

    bi_mixin_exist_intro {A} {Ψ : A  PROP} a : Ψ a   a, Ψ a;
    bi_mixin_exist_elim {A} (Φ : A  PROP) Q : ( a, Φ a  Q)  ( a, Φ a)  Q;

91
    (** BI connectives *)
Robbert Krebbers's avatar
Robbert Krebbers committed
92 93 94 95 96 97 98 99
    bi_mixin_sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q';
    bi_mixin_emp_sep_1 P : P  emp  P;
    bi_mixin_emp_sep_2 P : emp  P  P;
    bi_mixin_sep_comm' P Q : P  Q  Q  P;
    bi_mixin_sep_assoc' P Q R : (P  Q)  R  P  (Q  R);
    bi_mixin_wand_intro_r P Q R : (P  Q  R)  P  Q - R;
    bi_mixin_wand_elim_l' P Q R : (P  Q - R)  P  Q  R;

100
    (** Persistently *)
101
    (* In the ordered RA model: Holds without further assumptions. *)
102
    bi_mixin_persistently_mono P Q : (P  Q)  <pers> P  <pers> Q;
103
    (* In the ordered RA model: `core` is idempotent *)
104
    bi_mixin_persistently_idemp_2 P : <pers> P  <pers> <pers> P;
Robbert Krebbers's avatar
Robbert Krebbers committed
105

Ralf Jung's avatar
Ralf Jung committed
106
    (* In the ordered RA model: [ε ≼ core x]. *)
107
    bi_mixin_persistently_emp_2 : emp  <pers> emp;
108

Robbert Krebbers's avatar
Robbert Krebbers committed
109
    bi_mixin_persistently_forall_2 {A} (Ψ : A  PROP) :
110
      ( a, <pers> (Ψ a))  <pers> ( a, Ψ a);
Robbert Krebbers's avatar
Robbert Krebbers committed
111
    bi_mixin_persistently_exist_1 {A} (Ψ : A  PROP) :
112
      <pers> ( a, Ψ a)   a, <pers> (Ψ a);
Robbert Krebbers's avatar
Robbert Krebbers committed
113

114
    (* In the ordered RA model: [core x ≼ core (x ⋅ y)]. *)
115
    bi_mixin_persistently_absorbing P Q : <pers> P  Q  <pers> P;
Ralf Jung's avatar
typo  
Ralf Jung committed
116
    (* In the ordered RA model: [x ⋅ core x = x]. *)
117
    bi_mixin_persistently_and_sep_elim P Q : <pers> P  Q  P  Q;
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
  }.

120
  Record SbiMixin := {
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
121
    sbi_mixin_later_contractive : Contractive sbi_later;
122 123 124 125 126 127
    sbi_mixin_internal_eq_ne (A : ofeT) : NonExpansive2 (sbi_internal_eq A);

    (* Equality *)
    sbi_mixin_internal_eq_refl {A : ofeT} P (a : A) : P  a  a;
    sbi_mixin_internal_eq_rewrite {A : ofeT} a b (Ψ : A  PROP) :
      NonExpansive Ψ  a  b  Ψ a  Ψ b;
128
    sbi_mixin_fun_ext {A} {B : A  ofeT} (f g : discrete_fun B) : ( x, f x  g x)  f  g;
129 130
    sbi_mixin_sig_eq {A : ofeT} (P : A  Prop) (x y : sig P) : `x  `y  x  y;
    sbi_mixin_discrete_eq_1 {A : ofeT} (a b : A) : Discrete a  a  b  a  b;
Robbert Krebbers's avatar
Robbert Krebbers committed
131

132
    (* Later *)
Robbert Krebbers's avatar
Robbert Krebbers committed
133 134 135 136
    sbi_mixin_later_eq_1 {A : ofeT} (x y : A) : Next x  Next y   (x  y);
    sbi_mixin_later_eq_2 {A : ofeT} (x y : A) :  (x  y)  Next x  Next y;

    sbi_mixin_later_mono P Q : (P  Q)   P   Q;
137
    sbi_mixin_later_intro P : P   P;
Robbert Krebbers's avatar
Robbert Krebbers committed
138 139 140 141 142 143

    sbi_mixin_later_forall_2 {A} (Φ : A  PROP) : ( a,  Φ a)    a, Φ a;
    sbi_mixin_later_exist_false {A} (Φ : A  PROP) :
      (  a, Φ a)   False  ( a,  Φ a);
    sbi_mixin_later_sep_1 P Q :  (P  Q)   P   Q;
    sbi_mixin_later_sep_2 P Q :  P   Q   (P  Q);
144 145
    sbi_mixin_later_persistently_1 P :  <pers> P  <pers>  P;
    sbi_mixin_later_persistently_2 P : <pers>  P   <pers> P;
Robbert Krebbers's avatar
Robbert Krebbers committed
146 147 148 149 150

    sbi_mixin_later_false_em P :  P   False  ( False  P);
  }.
End bi_mixin.

151
Structure bi := Bi {
Robbert Krebbers's avatar
Robbert Krebbers committed
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  bi_car :> Type;
  bi_dist : Dist bi_car;
  bi_equiv : Equiv bi_car;
  bi_entails : bi_car  bi_car  Prop;
  bi_emp : bi_car;
  bi_pure : Prop  bi_car;
  bi_and : bi_car  bi_car  bi_car;
  bi_or : bi_car  bi_car  bi_car;
  bi_impl : bi_car  bi_car  bi_car;
  bi_forall :  A, (A  bi_car)  bi_car;
  bi_exist :  A, (A  bi_car)  bi_car;
  bi_sep : bi_car  bi_car  bi_car;
  bi_wand : bi_car  bi_car  bi_car;
  bi_persistently : bi_car  bi_car;
  bi_ofe_mixin : OfeMixin bi_car;
167
  bi_bi_mixin : BiMixin bi_entails bi_emp bi_pure bi_and bi_or bi_impl bi_forall
Robbert Krebbers's avatar
Robbert Krebbers committed
168
                        bi_exist bi_sep bi_wand bi_persistently;
Robbert Krebbers's avatar
Robbert Krebbers committed
169 170
}.

171 172
Coercion bi_ofeO (PROP : bi) : ofeT := OfeT PROP (bi_ofe_mixin PROP).
Canonical Structure bi_ofeO.
Robbert Krebbers's avatar
Robbert Krebbers committed
173

174 175 176 177 178 179 180 181 182 183 184
Instance: Params (@bi_entails) 1 := {}.
Instance: Params (@bi_emp) 1 := {}.
Instance: Params (@bi_pure) 1 := {}.
Instance: Params (@bi_and) 1 := {}.
Instance: Params (@bi_or) 1 := {}.
Instance: Params (@bi_impl) 1 := {}.
Instance: Params (@bi_forall) 2 := {}.
Instance: Params (@bi_exist) 2 := {}.
Instance: Params (@bi_sep) 1 := {}.
Instance: Params (@bi_wand) 1 := {}.
Instance: Params (@bi_persistently) 1 := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
185 186 187 188 189 190

Arguments bi_car : simpl never.
Arguments bi_dist : simpl never.
Arguments bi_equiv : simpl never.
Arguments bi_entails {PROP} _%I _%I : simpl never, rename.
Arguments bi_emp {PROP} : simpl never, rename.
191
Arguments bi_pure {PROP} _%stdpp : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
192 193 194 195 196 197 198 199 200
Arguments bi_and {PROP} _%I _%I : simpl never, rename.
Arguments bi_or {PROP} _%I _%I : simpl never, rename.
Arguments bi_impl {PROP} _%I _%I : simpl never, rename.
Arguments bi_forall {PROP _} _%I : simpl never, rename.
Arguments bi_exist {PROP _} _%I : simpl never, rename.
Arguments bi_sep {PROP} _%I _%I : simpl never, rename.
Arguments bi_wand {PROP} _%I _%I : simpl never, rename.
Arguments bi_persistently {PROP} _%I : simpl never, rename.

201
Structure sbi := Sbi {
Robbert Krebbers's avatar
Robbert Krebbers committed
202 203 204 205 206 207 208 209 210 211 212 213 214 215
  sbi_car :> Type;
  sbi_dist : Dist sbi_car;
  sbi_equiv : Equiv sbi_car;
  sbi_entails : sbi_car  sbi_car  Prop;
  sbi_emp : sbi_car;
  sbi_pure : Prop  sbi_car;
  sbi_and : sbi_car  sbi_car  sbi_car;
  sbi_or : sbi_car  sbi_car  sbi_car;
  sbi_impl : sbi_car  sbi_car  sbi_car;
  sbi_forall :  A, (A  sbi_car)  sbi_car;
  sbi_exist :  A, (A  sbi_car)  sbi_car;
  sbi_sep : sbi_car  sbi_car  sbi_car;
  sbi_wand : sbi_car  sbi_car  sbi_car;
  sbi_persistently : sbi_car  sbi_car;
216
  sbi_internal_eq :  A : ofeT, A  A  sbi_car;
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
217
  sbi_later : sbi_car  sbi_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
218
  sbi_ofe_mixin : OfeMixin sbi_car;
Ralf Jung's avatar
Ralf Jung committed
219
  sbi_cofe : Cofe (OfeT sbi_car sbi_ofe_mixin);
220
  sbi_bi_mixin : BiMixin sbi_entails sbi_emp sbi_pure sbi_and sbi_or sbi_impl
Robbert Krebbers's avatar
Robbert Krebbers committed
221 222 223 224
                         sbi_forall sbi_exist sbi_sep sbi_wand sbi_persistently;
  sbi_sbi_mixin : SbiMixin sbi_entails sbi_pure sbi_or sbi_impl
                           sbi_forall sbi_exist sbi_sep
                           sbi_persistently sbi_internal_eq sbi_later;
Robbert Krebbers's avatar
Robbert Krebbers committed
225 226
}.

227 228
Instance: Params (@sbi_later) 1  := {}.
Instance: Params (@sbi_internal_eq) 1 := {}.
229 230 231

Arguments sbi_later {PROP} _%I : simpl never, rename.
Arguments sbi_internal_eq {PROP _} _ _ : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
232

233 234
Coercion sbi_ofeO (PROP : sbi) : ofeT := OfeT PROP (sbi_ofe_mixin PROP).
Canonical Structure sbi_ofeO.
Robbert Krebbers's avatar
Robbert Krebbers committed
235 236 237
Coercion sbi_bi (PROP : sbi) : bi :=
  {| bi_ofe_mixin := sbi_ofe_mixin PROP; bi_bi_mixin := sbi_bi_mixin PROP |}.
Canonical Structure sbi_bi.
Ralf Jung's avatar
Ralf Jung committed
238 239
Global Instance sbi_cofe' (PROP : sbi) : Cofe PROP.
Proof. apply sbi_cofe. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
240 241 242 243 244 245

Arguments sbi_car : simpl never.
Arguments sbi_dist : simpl never.
Arguments sbi_equiv : simpl never.
Arguments sbi_entails {PROP} _%I _%I : simpl never, rename.
Arguments sbi_emp {PROP} : simpl never, rename.
246
Arguments sbi_pure {PROP} _%stdpp : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
247 248 249 250 251 252 253 254
Arguments sbi_and {PROP} _%I _%I : simpl never, rename.
Arguments sbi_or {PROP} _%I _%I : simpl never, rename.
Arguments sbi_impl {PROP} _%I _%I : simpl never, rename.
Arguments sbi_forall {PROP _} _%I : simpl never, rename.
Arguments sbi_exist {PROP _} _%I : simpl never, rename.
Arguments sbi_sep {PROP} _%I _%I : simpl never, rename.
Arguments sbi_wand {PROP} _%I _%I : simpl never, rename.
Arguments sbi_persistently {PROP} _%I : simpl never, rename.
255
Arguments sbi_internal_eq {PROP _} _ _ : simpl never, rename.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
256
Arguments sbi_later {PROP} _%I : simpl never, rename.
Robbert Krebbers's avatar
Robbert Krebbers committed
257

258
Hint Extern 0 (bi_entails _ _) => reflexivity : core.
259
Instance bi_rewrite_relation (PROP : bi) : RewriteRelation (@bi_entails PROP) := {}.
Robbert Krebbers's avatar
Robbert Krebbers committed
260 261
Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True).

262
Notation "P ⊢ Q" := (bi_entails P%I Q%I) : stdpp_scope.
263
Notation "P ⊢@{ PROP } Q" := (bi_entails (PROP:=PROP) P%I Q%I) (only parsing) : stdpp_scope.
264
Notation "(⊢)" := bi_entails (only parsing) : stdpp_scope.
Ralf Jung's avatar
Ralf Jung committed
265
Notation "(⊢@{ PROP } )" := (bi_entails (PROP:=PROP)) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
266

267
Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I) : stdpp_scope.
268
Notation "P ⊣⊢@{ PROP } Q" := (equiv (A:=bi_car PROP) P%I Q%I) (only parsing) : stdpp_scope.
269
Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : stdpp_scope.
Ralf Jung's avatar
Ralf Jung committed
270
Notation "(⊣⊢@{ PROP } )" := (equiv (A:=bi_car PROP)) (only parsing) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
271

272
Notation "P -∗ Q" := (P  Q) : stdpp_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
273 274

Notation "'emp'" := (bi_emp) : bi_scope.
275
Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
276 277 278 279 280 281 282 283 284 285 286 287 288 289
Notation "'True'" := (bi_pure True) : bi_scope.
Notation "'False'" := (bi_pure False) : bi_scope.
Infix "∧" := bi_and : bi_scope.
Notation "(∧)" := bi_and (only parsing) : bi_scope.
Infix "∨" := bi_or : bi_scope.
Notation "(∨)" := bi_or (only parsing) : bi_scope.
Infix "→" := bi_impl : bi_scope.
Infix "∗" := bi_sep : bi_scope.
Notation "(∗)" := bi_sep (only parsing) : bi_scope.
Notation "P -∗ Q" := (bi_wand P Q) : bi_scope.
Notation "∀ x .. y , P" :=
  (bi_forall (λ x, .. (bi_forall (λ y, P)) ..)%I) : bi_scope.
Notation "∃ x .. y , P" :=
  (bi_exist (λ x, .. (bi_exist (λ y, P)) ..)%I) : bi_scope.
290
Notation "'<pers>' P" := (bi_persistently P) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
291

292
Infix "≡" := sbi_internal_eq : bi_scope.
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
293
Notation "▷ P" := (sbi_later P) : bi_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
294

Ralf Jung's avatar
Ralf Jung committed
295 296
Coercion bi_emp_valid {PROP : bi} (P : PROP) : Prop := emp  P.
Coercion sbi_emp_valid {PROP : sbi} : PROP  Prop := bi_emp_valid.
Robbert Krebbers's avatar
Robbert Krebbers committed
297

Ralf Jung's avatar
Ralf Jung committed
298 299
Arguments bi_emp_valid {_} _%I : simpl never.
Typeclasses Opaque bi_emp_valid.
Robbert Krebbers's avatar
Robbert Krebbers committed
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

Module bi.
Section bi_laws.
Context {PROP : bi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.
Implicit Types A : Type.

(* About the entailment *)
Global Instance entails_po : PreOrder (@bi_entails PROP).
Proof. eapply bi_mixin_entails_po, bi_bi_mixin. Qed.
Lemma equiv_spec P Q : P  Q  (P  Q)  (Q  P).
Proof. eapply bi_mixin_equiv_spec, bi_bi_mixin. Qed.

(* Non-expansiveness *)
Global Instance pure_ne n : Proper (iff ==> dist n) (@bi_pure PROP).
Proof. eapply bi_mixin_pure_ne, bi_bi_mixin. Qed.
Global Instance and_ne : NonExpansive2 (@bi_and PROP).
Proof. eapply bi_mixin_and_ne, bi_bi_mixin. Qed.
Global Instance or_ne : NonExpansive2 (@bi_or PROP).
Proof. eapply bi_mixin_or_ne, bi_bi_mixin. Qed.
Global Instance impl_ne : NonExpansive2 (@bi_impl PROP).
Proof. eapply bi_mixin_impl_ne, bi_bi_mixin. Qed.
Global Instance forall_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_forall PROP A).
Proof. eapply bi_mixin_forall_ne, bi_bi_mixin. Qed.
Global Instance exist_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@bi_exist PROP A).
Proof. eapply bi_mixin_exist_ne, bi_bi_mixin. Qed.
Global Instance sep_ne : NonExpansive2 (@bi_sep PROP).
Proof. eapply bi_mixin_sep_ne, bi_bi_mixin. Qed.
Global Instance wand_ne : NonExpansive2 (@bi_wand PROP).
Proof. eapply bi_mixin_wand_ne, bi_bi_mixin. Qed.
Global Instance persistently_ne : NonExpansive (@bi_persistently PROP).
Proof. eapply bi_mixin_persistently_ne, bi_bi_mixin. Qed.

(* Higher-order logic *)
337
Lemma pure_intro (φ : Prop) P : φ  P   φ .
Robbert Krebbers's avatar
Robbert Krebbers committed
338 339 340
Proof. eapply bi_mixin_pure_intro, bi_bi_mixin. Qed.
Lemma pure_elim' (φ : Prop) P : (φ  True  P)   φ   P.
Proof. eapply bi_mixin_pure_elim', bi_bi_mixin. Qed.
341
Lemma pure_forall_2 {A} (φ : A  Prop) : ( a,  φ a ) @{PROP}   a, φ a .
Robbert Krebbers's avatar
Robbert Krebbers committed
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
Proof. eapply bi_mixin_pure_forall_2, bi_bi_mixin. Qed.

Lemma and_elim_l P Q : P  Q  P.
Proof. eapply bi_mixin_and_elim_l, bi_bi_mixin. Qed.
Lemma and_elim_r P Q : P  Q  Q.
Proof. eapply bi_mixin_and_elim_r, bi_bi_mixin. Qed.
Lemma and_intro P Q R : (P  Q)  (P  R)  P  Q  R.
Proof. eapply bi_mixin_and_intro, bi_bi_mixin. Qed.

Lemma or_intro_l P Q : P  P  Q.
Proof. eapply bi_mixin_or_intro_l, bi_bi_mixin. Qed.
Lemma or_intro_r P Q : Q  P  Q.
Proof. eapply bi_mixin_or_intro_r, bi_bi_mixin. Qed.
Lemma or_elim P Q R : (P  R)  (Q  R)  P  Q  R.
Proof. eapply bi_mixin_or_elim, bi_bi_mixin. Qed.

Lemma impl_intro_r P Q R : (P  Q  R)  P  Q  R.
Proof. eapply bi_mixin_impl_intro_r, bi_bi_mixin. Qed.
Lemma impl_elim_l' P Q R : (P  Q  R)  P  Q  R.
Proof. eapply bi_mixin_impl_elim_l', bi_bi_mixin. Qed.

Lemma forall_intro {A} P (Ψ : A  PROP) : ( a, P  Ψ a)  P   a, Ψ a.
Proof. eapply bi_mixin_forall_intro, bi_bi_mixin. Qed.
Lemma forall_elim {A} {Ψ : A  PROP} a : ( a, Ψ a)  Ψ a.
366
Proof. eapply (bi_mixin_forall_elim  bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
367 368 369 370 371 372 373 374 375 376 377 378 379 380

Lemma exist_intro {A} {Ψ : A  PROP} a : Ψ a   a, Ψ a.
Proof. eapply bi_mixin_exist_intro, bi_bi_mixin. Qed.
Lemma exist_elim {A} (Φ : A  PROP) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
Proof. eapply bi_mixin_exist_elim, bi_bi_mixin. Qed.

(* BI connectives *)
Lemma sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
Proof. eapply bi_mixin_sep_mono, bi_bi_mixin. Qed.
Lemma emp_sep_1 P : P  emp  P.
Proof. eapply bi_mixin_emp_sep_1, bi_bi_mixin. Qed.
Lemma emp_sep_2 P : emp  P  P.
Proof. eapply bi_mixin_emp_sep_2, bi_bi_mixin. Qed.
Lemma sep_comm' P Q : P  Q  Q  P.
381
Proof. eapply (bi_mixin_sep_comm' bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
382 383 384 385 386 387 388 389
Lemma sep_assoc' P Q R : (P  Q)  R  P  (Q  R).
Proof. eapply bi_mixin_sep_assoc', bi_bi_mixin. Qed.
Lemma wand_intro_r P Q R : (P  Q  R)  P  Q - R.
Proof. eapply bi_mixin_wand_intro_r, bi_bi_mixin. Qed.
Lemma wand_elim_l' P Q R : (P  Q - R)  P  Q  R.
Proof. eapply bi_mixin_wand_elim_l', bi_bi_mixin. Qed.

(* Persistently *)
390
Lemma persistently_mono P Q : (P  Q)  <pers> P  <pers> Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
Proof. eapply bi_mixin_persistently_mono, bi_bi_mixin. Qed.
392
Lemma persistently_idemp_2 P : <pers> P  <pers> <pers> P.
Robbert Krebbers's avatar
Robbert Krebbers committed
393 394
Proof. eapply bi_mixin_persistently_idemp_2, bi_bi_mixin. Qed.

395
Lemma persistently_emp_2 : emp @{PROP} <pers> emp.
396
Proof. eapply bi_mixin_persistently_emp_2, bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
397

398
Lemma persistently_forall_2 {A} (Ψ : A  PROP) :
399
  ( a, <pers> (Ψ a))  <pers> ( a, Ψ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
400
Proof. eapply bi_mixin_persistently_forall_2, bi_bi_mixin. Qed.
401
Lemma persistently_exist_1 {A} (Ψ : A  PROP) :
402
  <pers> ( a, Ψ a)   a, <pers> (Ψ a).
Robbert Krebbers's avatar
Robbert Krebbers committed
403 404
Proof. eapply bi_mixin_persistently_exist_1, bi_bi_mixin. Qed.

405
Lemma persistently_absorbing P Q : <pers> P  Q  <pers> P.
406
Proof. eapply (bi_mixin_persistently_absorbing bi_entails), bi_bi_mixin. Qed.
407
Lemma persistently_and_sep_elim P Q : <pers> P  Q  P  Q.
408
Proof. eapply (bi_mixin_persistently_and_sep_elim bi_entails), bi_bi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
409 410 411 412 413 414 415
End bi_laws.

Section sbi_laws.
Context {PROP : sbi}.
Implicit Types φ : Prop.
Implicit Types P Q R : PROP.

416 417 418 419 420 421 422 423 424 425
(* Equality *)
Global Instance internal_eq_ne (A : ofeT) : NonExpansive2 (@sbi_internal_eq PROP A).
Proof. eapply sbi_mixin_internal_eq_ne, sbi_sbi_mixin. Qed.

Lemma internal_eq_refl {A : ofeT} P (a : A) : P  a  a.
Proof. eapply sbi_mixin_internal_eq_refl, sbi_sbi_mixin. Qed.
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A  PROP) :
  NonExpansive Ψ  a  b  Ψ a  Ψ b.
Proof. eapply sbi_mixin_internal_eq_rewrite, sbi_sbi_mixin. Qed.

426
Lemma fun_ext {A} {B : A  ofeT} (f g : discrete_fun B) :
427
  ( x, f x  g x) @{PROP} f  g.
428
Proof. eapply sbi_mixin_fun_ext, sbi_sbi_mixin. Qed.
429
Lemma sig_eq {A : ofeT} (P : A  Prop) (x y : sig P) :
430
  `x  `y @{PROP} x  y.
431 432
Proof. eapply sbi_mixin_sig_eq, sbi_sbi_mixin. Qed.
Lemma discrete_eq_1 {A : ofeT} (a b : A) :
433
  Discrete a  a  b @{PROP} a  b.
434 435 436
Proof. eapply sbi_mixin_discrete_eq_1, sbi_sbi_mixin. Qed.

(* Later *)
Jacques-Henri Jourdan's avatar
Jacques-Henri Jourdan committed
437
Global Instance later_contractive : Contractive (@sbi_later PROP).
Robbert Krebbers's avatar
Robbert Krebbers committed
438 439
Proof. eapply sbi_mixin_later_contractive, sbi_sbi_mixin. Qed.

440
Lemma later_eq_1 {A : ofeT} (x y : A) : Next x  Next y @{PROP}  (x  y).
Robbert Krebbers's avatar
Robbert Krebbers committed
441
Proof. eapply sbi_mixin_later_eq_1, sbi_sbi_mixin. Qed.
442
Lemma later_eq_2 {A : ofeT} (x y : A) :  (x  y) @{PROP} Next x  Next y.
Robbert Krebbers's avatar
Robbert Krebbers committed
443 444 445 446
Proof. eapply sbi_mixin_later_eq_2, sbi_sbi_mixin. Qed.

Lemma later_mono P Q : (P  Q)   P   Q.
Proof. eapply sbi_mixin_later_mono, sbi_sbi_mixin. Qed.
447 448
Lemma later_intro P : P   P.
Proof. eapply sbi_mixin_later_intro, sbi_sbi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
449 450 451 452 453 454 455 456 457 458

Lemma later_forall_2 {A} (Φ : A  PROP) : ( a,  Φ a)    a, Φ a.
Proof. eapply sbi_mixin_later_forall_2, sbi_sbi_mixin. Qed.
Lemma later_exist_false {A} (Φ : A  PROP) :
  (  a, Φ a)   False  ( a,  Φ a).
Proof. eapply sbi_mixin_later_exist_false, sbi_sbi_mixin. Qed.
Lemma later_sep_1 P Q :  (P  Q)   P   Q.
Proof. eapply sbi_mixin_later_sep_1, sbi_sbi_mixin. Qed.
Lemma later_sep_2 P Q :  P   Q   (P  Q).
Proof. eapply sbi_mixin_later_sep_2, sbi_sbi_mixin. Qed.
459
Lemma later_persistently_1 P :  <pers> P  <pers>  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
Proof. eapply (sbi_mixin_later_persistently_1 bi_entails), sbi_sbi_mixin. Qed.
461
Lemma later_persistently_2 P : <pers>  P   <pers> P.
Robbert Krebbers's avatar
Robbert Krebbers committed
462
Proof. eapply (sbi_mixin_later_persistently_2 bi_entails), sbi_sbi_mixin. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
463 464 465 466

Lemma later_false_em P :  P   False  ( False  P).
Proof. eapply sbi_mixin_later_false_em, sbi_sbi_mixin. Qed.
End sbi_laws.
467

Robbert Krebbers's avatar
Robbert Krebbers committed
468
End bi.