big_op.v 22.5 KB
Newer Older
1
From stdpp Require Export functions gmap gmultiset.
2
From iris.algebra Require Export monoid.
3 4 5
Set Default Proof Using "Type*".
Local Existing Instances monoid_ne monoid_assoc monoid_comm
  monoid_left_id monoid_right_id monoid_proper
6 7
  monoid_homomorphism_rel_po monoid_homomorphism_rel_proper
  monoid_homomorphism_op_proper
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
  monoid_homomorphism_ne weak_monoid_homomorphism_proper.

(** We define the following big operators with binders build in:

- The operator [ [^o list] k ↦ x ∈ l, P ] folds over a list [l]. The binder [x]
  refers to each element at index [k].
- The operator [ [^o map] k ↦ x ∈ m, P ] folds over a map [m]. The binder [x]
  refers to each element at index [k].
- The operator [ [^o set] x ∈ X, P ] folds over a set [X]. The binder [x] refers
  to each element.

Since these big operators are like quantifiers, they have the same precedence as
[∀] and [∃]. *)

(** * Big ops over lists *)
Fixpoint big_opL `{Monoid M o} {A} (f : nat  A  M) (xs : list A) : M :=
  match xs with
  | [] => monoid_unit
  | x :: xs => o (f 0 x) (big_opL (λ n, f (S n)) xs)
  end.
28
Instance: Params (@big_opL) 4 := {}.
29
Arguments big_opL {M} o {_ A} _ !_ /.
30
Typeclasses Opaque big_opL.
31 32
Notation "'[^' o 'list]' k ↦ x ∈ l , P" := (big_opL o (λ k x, P) l)
  (at level 200, o at level 1, l at level 10, k, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
33
   format "[^ o  list]  k ↦ x  ∈  l ,  P") : stdpp_scope.
34 35
Notation "'[^' o 'list]' x ∈ l , P" := (big_opL o (λ _ x, P) l)
  (at level 200, o at level 1, l at level 10, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
36
   format "[^ o  list]  x  ∈  l ,  P") : stdpp_scope.
37 38 39

Definition big_opM `{Monoid M o} `{Countable K} {A} (f : K  A  M)
    (m : gmap K A) : M := big_opL o (λ _, curry f) (map_to_list m).
40
Instance: Params (@big_opM) 7 := {}.
41 42 43 44
Arguments big_opM {M} o {_ K _ _ A} _ _ : simpl never.
Typeclasses Opaque big_opM.
Notation "'[^' o 'map]' k ↦ x ∈ m , P" := (big_opM o (λ k x, P) m)
  (at level 200, o at level 1, m at level 10, k, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
45
   format "[^  o  map]  k ↦ x  ∈  m ,  P") : stdpp_scope.
46 47
Notation "'[^' o 'map]' x ∈ m , P" := (big_opM o (λ _ x, P) m)
  (at level 200, o at level 1, m at level 10, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
48
   format "[^ o  map]  x  ∈  m ,  P") : stdpp_scope.
49 50 51

Definition big_opS `{Monoid M o} `{Countable A} (f : A  M)
  (X : gset A) : M := big_opL o (λ _, f) (elements X).
52
Instance: Params (@big_opS) 6 := {}.
53 54 55 56
Arguments big_opS {M} o {_ A _ _} _ _ : simpl never.
Typeclasses Opaque big_opS.
Notation "'[^' o 'set]' x ∈ X , P" := (big_opS o (λ x, P) X)
  (at level 200, o at level 1, X at level 10, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
57
   format "[^ o  set]  x  ∈  X ,  P") : stdpp_scope.
58 59 60

Definition big_opMS `{Monoid M o} `{Countable A} (f : A  M)
  (X : gmultiset A) : M := big_opL o (λ _, f) (elements X).
61
Instance: Params (@big_opMS) 7 := {}.
62 63 64 65
Arguments big_opMS {M} o {_ A _ _} _ _ : simpl never.
Typeclasses Opaque big_opMS.
Notation "'[^' o 'mset]' x ∈ X , P" := (big_opMS o (λ x, P) X)
  (at level 200, o at level 1, X at level 10, x at level 1, right associativity,
Robbert Krebbers's avatar
Robbert Krebbers committed
66
   format "[^ o  mset]  x  ∈  X ,  P") : stdpp_scope.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

(** * Properties about big ops *)
Section big_op.
Context `{Monoid M o}.
Implicit Types xs : list M.
Infix "`o`" := o (at level 50, left associativity).

(** ** Big ops over lists *)
Section list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types f g : nat  A  M.

  Lemma big_opL_nil f : ([^o list] ky  [], f k y) = monoid_unit.
  Proof. done. Qed.
  Lemma big_opL_cons f x l :
    ([^o list] ky  x :: l, f k y) = f 0 x `o` [^o list] ky  l, f (S k) y.
  Proof. done. Qed.
  Lemma big_opL_singleton f x : ([^o list] ky  [x], f k y)  f 0 x.
  Proof. by rewrite /= right_id. Qed.
  Lemma big_opL_app f l1 l2 :
    ([^o list] ky  l1 ++ l2, f k y)
     ([^o list] ky  l1, f k y) `o` ([^o list] ky  l2, f (length l1 + k) y).
  Proof.
    revert f. induction l1 as [|x l1 IH]=> f /=; first by rewrite left_id.
    by rewrite IH assoc.
  Qed.

95 96 97
  Lemma big_opL_unit l : ([^o list] ky  l, monoid_unit)  (monoid_unit : M).
  Proof. induction l; rewrite /= ?left_id //. Qed.

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  Lemma big_opL_forall R f g l :
    Reflexive R 
    Proper (R ==> R ==> R) o 
    ( k y, l !! k = Some y  R (f k y) (g k y)) 
    R ([^o list] k  y  l, f k y) ([^o list] k  y  l, g k y).
  Proof.
    intros ??. revert f g. induction l as [|x l IH]=> f g ? //=; f_equiv; eauto.
  Qed.

  Lemma big_opL_ext f g l :
    ( k y, l !! k = Some y  f k y = g k y) 
    ([^o list] k  y  l, f k y) = [^o list] k  y  l, g k y.
  Proof. apply big_opL_forall; apply _. Qed.
  Lemma big_opL_proper f g l :
    ( k y, l !! k = Some y  f k y  g k y) 
    ([^o list] k  y  l, f k y)  ([^o list] k  y  l, g k y).
  Proof. apply big_opL_forall; apply _. Qed.

  Lemma big_opL_permutation (f : A  M) l1 l2 :
    l1  l2  ([^o list] x  l1, f x)  ([^o list] x  l2, f x).
  Proof.
    induction 1 as [|x xs1 xs2 ? IH|x y xs|xs1 xs2 xs3]; simpl; auto.
    - by rewrite IH.
    - by rewrite !assoc (comm _ (f x)).
    - by etrans.
  Qed.
  Global Instance big_opL_permutation' (f : A  M) :
    Proper (() ==> ()) (big_opL o (λ _, f)).
  Proof. intros xs1 xs2. apply big_opL_permutation. Qed.

  Global Instance big_opL_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==>
            eq ==> dist n) (big_opL o (A:=A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
131
  Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
132 133 134
  Global Instance big_opL_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> eq ==> ())
           (big_opL o (A:=A)).
Robbert Krebbers's avatar
Robbert Krebbers committed
135
  Proof. intros f f' Hf l ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
136 137 138 139 140 141 142 143 144 145 146 147

  Lemma big_opL_consZ_l (f : Z  A  M) x l :
    ([^o list] ky  x :: l, f k y) = f 0 x `o` [^o list] ky  l, f (1 + k)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.
  Lemma big_opL_consZ_r (f : Z  A  M) x l :
    ([^o list] ky  x :: l, f k y) = f 0 x `o` [^o list] ky  l, f (k + 1)%Z y.
  Proof. rewrite big_opL_cons. auto using big_opL_ext with f_equal lia. Qed.

  Lemma big_opL_fmap {B} (h : A  B) (f : nat  B  M) l :
    ([^o list] ky  h <$> l, f k y)  ([^o list] ky  l, f k (h y)).
  Proof. revert f. induction l as [|x l IH]=> f; csimpl=> //. by rewrite IH. Qed.

148
  Lemma big_opL_op f g l :
149 150 151 152 153 154 155 156
    ([^o list] kx  l, f k x `o` g k x)
     ([^o list] kx  l, f k x) `o` ([^o list] kx  l, g k x).
  Proof.
    revert f g; induction l as [|x l IH]=> f g /=; first by rewrite left_id.
    by rewrite IH -!assoc (assoc _ (g _ _)) [(g _ _ `o` _)]comm -!assoc.
  Qed.
End list.

157 158 159 160 161 162
Lemma big_opL_bind {A B} (h : A  list B) (f : B  M) l :
  ([^o list] y  l = h, f y)  ([^o list] x  l, [^o list] y  h x, f y).
Proof.
  revert f. induction l as [|x l IH]=> f; csimpl=> //. by rewrite big_opL_app IH.
Qed.

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
(** ** Big ops over finite maps *)
Section gmap.
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
  Implicit Types f g : K  A  M.

  Lemma big_opM_forall R f g m :
    Reflexive R  Proper (R ==> R ==> R) o 
    ( k x, m !! k = Some x  R (f k x) (g k x)) 
    R ([^o map] k  x  m, f k x) ([^o map] k  x  m, g k x).
  Proof.
    intros ?? Hf. apply (big_opL_forall R); auto.
    intros k [i x] ?%elem_of_list_lookup_2. by apply Hf, elem_of_map_to_list.
  Qed.

  Lemma big_opM_ext f g m :
    ( k x, m !! k = Some x  f k x = g k x) 
    ([^o map] k  x  m, f k x) = ([^o map] k  x  m, g k x).
  Proof. apply big_opM_forall; apply _. Qed.
  Lemma big_opM_proper f g m :
    ( k x, m !! k = Some x  f k x  g k x) 
    ([^o map] k  x  m, f k x)  ([^o map] k  x  m, g k x).
  Proof. apply big_opM_forall; apply _. Qed.

  Global Instance big_opM_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (dist n)) ==> eq ==> dist n)
Robbert Krebbers's avatar
Robbert Krebbers committed
189
           (big_opM o (K:=K) (A:=A)).
190 191 192
  Proof. intros f g Hf m ? <-. apply big_opM_forall; apply _ || intros; apply Hf. Qed.
  Global Instance big_opM_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> eq ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
193
           (big_opM o (K:=K) (A:=A)).
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
  Proof. intros f g Hf m ? <-. apply big_opM_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opM_empty f : ([^o map] kx  , f k x) = monoid_unit.
  Proof. by rewrite /big_opM map_to_list_empty. Qed.

  Lemma big_opM_insert f m i x :
    m !! i = None 
    ([^o map] ky  <[i:=x]> m, f k y)  f i x `o` [^o map] ky  m, f k y.
  Proof. intros ?. by rewrite /big_opM map_to_list_insert. Qed.

  Lemma big_opM_delete f m i x :
    m !! i = Some x 
    ([^o map] ky  m, f k y)  f i x `o` [^o map] ky  delete i m, f k y.
  Proof.
    intros. rewrite -big_opM_insert ?lookup_delete //.
    by rewrite insert_delete insert_id.
  Qed.

  Lemma big_opM_singleton f i x : ([^o map] ky  {[i:=x]}, f k y)  f i x.
  Proof.
    rewrite -insert_empty big_opM_insert/=; last auto using lookup_empty.
    by rewrite big_opM_empty right_id.
  Qed.

218 219 220
  Lemma big_opM_unit m : ([^o map] ky  m, monoid_unit)  (monoid_unit : M).
  Proof. induction m using map_ind; rewrite /= ?big_opM_insert ?left_id //. Qed.

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  Lemma big_opM_fmap {B} (h : A  B) (f : K  B  M) m :
    ([^o map] ky  h <$> m, f k y)  ([^o map] ky  m, f k (h y)).
  Proof.
    rewrite /big_opM map_to_list_fmap big_opL_fmap.
    by apply big_opL_proper=> ? [??].
  Qed.

  Lemma big_opM_insert_override (f : K  A  M) m i x x' :
    m !! i = Some x  f i x  f i x' 
    ([^o map] ky  <[i:=x']> m, f k y)  ([^o map] ky  m, f k y).
  Proof.
    intros ? Hx. rewrite -insert_delete big_opM_insert ?lookup_delete //.
    by rewrite -Hx -big_opM_delete.
  Qed.

  Lemma big_opM_fn_insert {B} (g : K  A  B  M) (f : K  B) m i (x : A) b :
    m !! i = None 
    ([^o map] ky  <[i:=x]> m, g k y (<[i:=b]> f k))
     g i x b `o` [^o map] ky  m, g k y (f k).
  Proof.
    intros. rewrite big_opM_insert // fn_lookup_insert.
    f_equiv; apply big_opM_proper; auto=> k y ?.
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opM_fn_insert' (f : K  M) m i x P :
    m !! i = None 
    ([^o map] ky  <[i:=x]> m, <[i:=P]> f k)  (P `o` [^o map] ky  m, f k).
  Proof. apply (big_opM_fn_insert (λ _ _, id)). Qed.

250 251 252 253 254 255 256 257 258 259 260 261
  Lemma big_opM_union f m1 m2 :
    m1 ## m2 
    ([^o map] ky  m1  m2, f k y)  ([^o map] ky  m1, f k y) `o` ([^o map] ky  m2, f k y).
  Proof.
    intros. induction m1 as [|i x m ? IH] using map_ind.
    { by rewrite big_opM_empty !left_id. }
    decompose_map_disjoint.
    rewrite -insert_union_l !big_opM_insert //;
      last by apply lookup_union_None.
    rewrite -assoc IH //.
  Qed.

262
  Lemma big_opM_op f g m :
263 264
    ([^o map] kx  m, f k x `o` g k x)
     ([^o map] kx  m, f k x) `o` ([^o map] kx  m, g k x).
265
  Proof. rewrite /big_opM -big_opL_op. by apply big_opL_proper=> ? [??]. Qed.
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
End gmap.


(** ** Big ops over finite sets *)
Section gset.
  Context `{Countable A}.
  Implicit Types X : gset A.
  Implicit Types f : A  M.

  Lemma big_opS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) o 
    ( x, x  X  R (f x) (g x)) 
    R ([^o set] x  X, f x) ([^o set] x  X, g x).
  Proof.
    intros ?? Hf. apply (big_opL_forall R); auto.
    intros k x ?%elem_of_list_lookup_2. by apply Hf, elem_of_elements.
  Qed.

  Lemma big_opS_ext f g X :
    ( x, x  X  f x = g x) 
    ([^o set] x  X, f x) = ([^o set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.
  Lemma big_opS_proper f g X :
    ( x, x  X  f x  g x) 
    ([^o set] x  X, f x)  ([^o set] x  X, g x).
  Proof. apply big_opS_forall; apply _. Qed.

  Global Instance big_opS_ne n :
    Proper (pointwise_relation _ (dist n) ==> eq ==> dist n) (big_opS o (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opS_forall; apply _ || intros; apply Hf. Qed.
  Global Instance big_opS_proper' :
    Proper (pointwise_relation _ () ==> eq ==> ()) (big_opS o (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opS_empty f : ([^o set] x  , f x) = monoid_unit.
  Proof. by rewrite /big_opS elements_empty. Qed.

  Lemma big_opS_insert f X x :
    x  X  ([^o set] y  {[ x ]}  X, f y)  (f x `o` [^o set] y  X, f y).
  Proof. intros. by rewrite /big_opS elements_union_singleton. Qed.
  Lemma big_opS_fn_insert {B} (f : A  B  M) h X x b :
    x  X 
    ([^o set] y  {[ x ]}  X, f y (<[x:=b]> h y))
     f x b `o` [^o set] y  X, f y (h y).
  Proof.
    intros. rewrite big_opS_insert // fn_lookup_insert.
    f_equiv; apply big_opS_proper; auto=> y ?.
    by rewrite fn_lookup_insert_ne; last set_solver.
  Qed.
  Lemma big_opS_fn_insert' f X x P :
    x  X  ([^o set] y  {[ x ]}  X, <[x:=P]> f y)  (P `o` [^o set] y  X, f y).
  Proof. apply (big_opS_fn_insert (λ y, id)). Qed.

  Lemma big_opS_union f X Y :
320
    X ## Y 
321 322
    ([^o set] y  X  Y, f y)  ([^o set] y  X, f y) `o` ([^o set] y  Y, f y).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
323
    intros. induction X as [|x X ? IH] using set_ind_L.
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
    { by rewrite left_id_L big_opS_empty left_id. }
    rewrite -assoc_L !big_opS_insert; [|set_solver..].
    by rewrite -assoc IH; last set_solver.
  Qed.

  Lemma big_opS_delete f X x :
    x  X  ([^o set] y  X, f y)  f x `o` [^o set] y  X  {[ x ]}, f y.
  Proof.
    intros. rewrite -big_opS_insert; last set_solver.
    by rewrite -union_difference_L; last set_solver.
  Qed.

  Lemma big_opS_singleton f x : ([^o set] y  {[ x ]}, f y)  f x.
  Proof. intros. by rewrite /big_opS elements_singleton /= right_id. Qed.

339 340
  Lemma big_opS_unit X : ([^o set] y  X, monoid_unit)  (monoid_unit : M).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
    induction X using set_ind_L; rewrite /= ?big_opS_insert ?left_id //.
342 343
  Qed.

344
  Lemma big_opS_op f g X :
345
    ([^o set] y  X, f y `o` g y)  ([^o set] y  X, f y) `o` ([^o set] y  X, g y).
346
  Proof. by rewrite /big_opS -big_opL_op. Qed.
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
End gset.

Lemma big_opM_dom `{Countable K} {A} (f : K  M) (m : gmap K A) :
  ([^o map] k_  m, f k)  ([^o set] k  dom _ m, f k).
Proof.
  induction m as [|i x ?? IH] using map_ind; [by rewrite dom_empty_L|].
  by rewrite dom_insert_L big_opM_insert // IH big_opS_insert ?not_elem_of_dom.
Qed.

(** ** Big ops over finite msets *)
Section gmultiset.
  Context `{Countable A}.
  Implicit Types X : gmultiset A.
  Implicit Types f : A  M.

  Lemma big_opMS_forall R f g X :
    Reflexive R  Proper (R ==> R ==> R) o 
    ( x, x  X  R (f x) (g x)) 
    R ([^o mset] x  X, f x) ([^o mset] x  X, g x).
  Proof.
    intros ?? Hf. apply (big_opL_forall R); auto.
    intros k x ?%elem_of_list_lookup_2. by apply Hf, gmultiset_elem_of_elements.
  Qed.

  Lemma big_opMS_ext f g X :
    ( x, x  X  f x = g x) 
    ([^o mset] x  X, f x) = ([^o mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.
  Lemma big_opMS_proper f g X :
    ( x, x  X  f x  g x) 
    ([^o mset] x  X, f x)  ([^o mset] x  X, g x).
  Proof. apply big_opMS_forall; apply _. Qed.

  Global Instance big_opMS_ne n :
    Proper (pointwise_relation _ (dist n) ==> eq ==> dist n) (big_opMS o (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.
  Global Instance big_opMS_proper' :
    Proper (pointwise_relation _ () ==> eq ==> ()) (big_opMS o (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.

  Lemma big_opMS_empty f : ([^o mset] x  , f x) = monoid_unit.
  Proof. by rewrite /big_opMS gmultiset_elements_empty. Qed.

390 391 392
  Lemma big_opMS_disj_union f X Y :
    ([^o mset] y  X  Y, f y)  ([^o mset] y  X, f y) `o` [^o mset] y  Y, f y.
  Proof. by rewrite /big_opMS gmultiset_elements_disj_union big_opL_app. Qed.
393 394 395 396 397 398 399 400 401

  Lemma big_opMS_singleton f x : ([^o mset] y  {[ x ]}, f y)  f x.
  Proof.
    intros. by rewrite /big_opMS gmultiset_elements_singleton /= right_id.
  Qed.

  Lemma big_opMS_delete f X x :
    x  X  ([^o mset] y  X, f y)  f x `o` [^o mset] y  X  {[ x ]}, f y.
  Proof.
402 403
    intros. rewrite -big_opMS_singleton -big_opMS_disj_union.
    by rewrite -gmultiset_disj_union_difference'.
404 405
  Qed.

406 407 408
  Lemma big_opMS_unit X : ([^o mset] y  X, monoid_unit)  (monoid_unit : M).
  Proof.
    induction X using gmultiset_ind;
409
      rewrite /= ?big_opMS_disj_union ?big_opMS_singleton ?left_id //.
410 411
  Qed.

412
  Lemma big_opMS_op f g X :
413
    ([^o mset] y  X, f y `o` g y)  ([^o mset] y  X, f y) `o` ([^o mset] y  X, g y).
414
  Proof. by rewrite /big_opMS -big_opL_op. Qed.
415 416 417 418 419 420 421
End gmultiset.
End big_op.

Section homomorphisms.
  Context `{Monoid M1 o1, Monoid M2 o2}.
  Infix "`o1`" := o1 (at level 50, left associativity).
  Infix "`o2`" := o2 (at level 50, left associativity).
422 423 424 425
  (** The ssreflect rewrite tactic only works for relations that have a
  [RewriteRelation] instance. For the purpose of this section, we want to
  rewrite with arbitrary relations, so we declare any relation to be a
  [RewriteRelation]. *)
426
  Local Instance:  {A} (R : relation A), RewriteRelation R := {}.
427

428
  Lemma big_opL_commute {A} (h : M1  M2) `{!MonoidHomomorphism o1 o2 R h}
429
      (f : nat  A  M1) l :
430
    R (h ([^o1 list] kx  l, f k x)) ([^o2 list] kx  l, h (f k x)).
431 432
  Proof.
    revert f. induction l as [|x l IH]=> f /=.
433 434
    - apply monoid_homomorphism_unit.
    - by rewrite monoid_homomorphism IH.
435
  Qed.
436
  Lemma big_opL_commute1 {A} (h : M1  M2) `{!WeakMonoidHomomorphism o1 o2 R h}
437
      (f : nat  A  M1) l :
438
    l  []  R (h ([^o1 list] kx  l, f k x)) ([^o2 list] kx  l, h (f k x)).
439 440 441
  Proof.
    intros ?. revert f. induction l as [|x [|x' l'] IH]=> f //.
    - by rewrite !big_opL_singleton.
442
    - by rewrite !(big_opL_cons _ x) monoid_homomorphism IH.
443 444 445
  Qed.

  Lemma big_opM_commute `{Countable K} {A} (h : M1  M2)
446 447
      `{!MonoidHomomorphism o1 o2 R h} (f : K  A  M1) m :
    R (h ([^o1 map] kx  m, f k x)) ([^o2 map] kx  m, h (f k x)).
448 449 450 451 452 453
  Proof.
    intros. induction m as [|i x m ? IH] using map_ind.
    - by rewrite !big_opM_empty monoid_homomorphism_unit.
    - by rewrite !big_opM_insert // monoid_homomorphism -IH.
  Qed.
  Lemma big_opM_commute1 `{Countable K} {A} (h : M1  M2)
454 455
      `{!WeakMonoidHomomorphism o1 o2 R h} (f : K  A  M1) m :
    m    R (h ([^o1 map] kx  m, f k x)) ([^o2 map] kx  m, h (f k x)).
456 457 458 459 460 461 462 463
  Proof.
    intros. induction m as [|i x m ? IH] using map_ind; [done|].
    destruct (decide (m = )) as [->|].
    - by rewrite !big_opM_insert // !big_opM_empty !right_id.
    - by rewrite !big_opM_insert // monoid_homomorphism -IH //.
  Qed.

  Lemma big_opS_commute `{Countable A} (h : M1  M2)
464 465
      `{!MonoidHomomorphism o1 o2 R h} (f : A  M1) X :
    R (h ([^o1 set] x  X, f x)) ([^o2 set] x  X, h (f x)).
466
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
467
    intros. induction X as [|x X ? IH] using set_ind_L.
468 469 470 471
    - by rewrite !big_opS_empty monoid_homomorphism_unit.
    - by rewrite !big_opS_insert // monoid_homomorphism -IH.
  Qed.
  Lemma big_opS_commute1 `{Countable A} (h : M1  M2)
472 473
      `{!WeakMonoidHomomorphism o1 o2 R h} (f : A  M1) X :
    X    R (h ([^o1 set] x  X, f x)) ([^o2 set] x  X, h (f x)).
474
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
475
    intros. induction X as [|x X ? IH] using set_ind_L; [done|].
476 477 478 479 480 481
    destruct (decide (X = )) as [->|].
    - by rewrite !big_opS_insert // !big_opS_empty !right_id.
    - by rewrite !big_opS_insert // monoid_homomorphism -IH //.
  Qed.

  Lemma big_opMS_commute `{Countable A} (h : M1  M2)
482 483
      `{!MonoidHomomorphism o1 o2 R h} (f : A  M1) X :
    R (h ([^o1 mset] x  X, f x)) ([^o2 mset] x  X, h (f x)).
484 485 486
  Proof.
    intros. induction X as [|x X IH] using gmultiset_ind.
    - by rewrite !big_opMS_empty monoid_homomorphism_unit.
487
    - by rewrite !big_opMS_disj_union !big_opMS_singleton monoid_homomorphism -IH.
488 489
  Qed.
  Lemma big_opMS_commute1 `{Countable A} (h : M1  M2)
490 491
      `{!WeakMonoidHomomorphism o1 o2 R h} (f : A  M1) X :
    X    R (h ([^o1 mset] x  X, f x)) ([^o2 mset] x  X, h (f x)).
492 493 494
  Proof.
    intros. induction X as [|x X IH] using gmultiset_ind; [done|].
    destruct (decide (X = )) as [->|].
495 496
    - by rewrite !big_opMS_disj_union !big_opMS_singleton !big_opMS_empty !right_id.
    - by rewrite !big_opMS_disj_union !big_opMS_singleton monoid_homomorphism -IH //.
497 498 499 500 501
  Qed.

  Context `{!LeibnizEquiv M2}.

  Lemma big_opL_commute_L {A} (h : M1  M2)
502
      `{!MonoidHomomorphism o1 o2 () h} (f : nat  A  M1) l :
503 504 505
    h ([^o1 list] kx  l, f k x) = ([^o2 list] kx  l, h (f k x)).
  Proof. unfold_leibniz. by apply big_opL_commute. Qed.
  Lemma big_opL_commute1_L {A} (h : M1  M2)
506
      `{!WeakMonoidHomomorphism o1 o2 () h} (f : nat  A  M1) l :
507 508 509 510
    l  []  h ([^o1 list] kx  l, f k x) = ([^o2 list] kx  l, h (f k x)).
  Proof. unfold_leibniz. by apply big_opL_commute1. Qed.

  Lemma big_opM_commute_L `{Countable K} {A} (h : M1  M2)
511
      `{!MonoidHomomorphism o1 o2 () h} (f : K  A  M1) m :
512 513 514
    h ([^o1 map] kx  m, f k x) = ([^o2 map] kx  m, h (f k x)).
  Proof. unfold_leibniz. by apply big_opM_commute. Qed.
  Lemma big_opM_commute1_L `{Countable K} {A} (h : M1  M2)
515
      `{!WeakMonoidHomomorphism o1 o2 () h} (f : K  A  M1) m :
516 517 518 519
    m    h ([^o1 map] kx  m, f k x) = ([^o2 map] kx  m, h (f k x)).
  Proof. unfold_leibniz. by apply big_opM_commute1. Qed.

  Lemma big_opS_commute_L `{Countable A} (h : M1  M2)
520
      `{!MonoidHomomorphism o1 o2 () h} (f : A  M1) X :
521 522 523
    h ([^o1 set] x  X, f x) = ([^o2 set] x  X, h (f x)).
  Proof. unfold_leibniz. by apply big_opS_commute. Qed.
  Lemma big_opS_commute1_L `{ Countable A} (h : M1  M2)
524
      `{!WeakMonoidHomomorphism o1 o2 () h} (f : A  M1) X :
525 526 527 528
    X    h ([^o1 set] x  X, f x) = ([^o2 set] x  X, h (f x)).
  Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opS_commute1. Qed.

  Lemma big_opMS_commute_L `{Countable A} (h : M1  M2)
529
      `{!MonoidHomomorphism o1 o2 () h} (f : A  M1) X :
530 531 532
    h ([^o1 mset] x  X, f x) = ([^o2 mset] x  X, h (f x)).
  Proof. unfold_leibniz. by apply big_opMS_commute. Qed.
  Lemma big_opMS_commute1_L `{Countable A} (h : M1  M2)
533
      `{!WeakMonoidHomomorphism o1 o2 () h} (f : A  M1) X :
534 535 536
    X    h ([^o1 mset] x  X, f x) = ([^o2 mset] x  X, h (f x)).
  Proof. intros. rewrite <-leibniz_equiv_iff. by apply big_opMS_commute1. Qed.
End homomorphisms.