namespaces.v 3.69 KB
Newer Older
1
From iris.prelude Require Export countable coPset.
2
From iris.algebra Require Export base.
3
4

Definition namespace := list positive.
5
6
7
8
Instance namespace_dec (N1 N2 : namespace) : Decision (N1 = N2) := _.
Instance namespace_countable : Countable namespace := _.
Typeclasses Opaque namespace.

9
Definition nroot : namespace := nil.
10
11

Definition ndot_def `{Countable A} (N : namespace) (x : A) : namespace :=
12
  encode x :: N.
13
14
15
16
17
18
19
20
Definition ndot_aux : { x | x = @ndot_def }. by eexists. Qed.
Definition ndot {A A_dec A_count}:= proj1_sig ndot_aux A A_dec A_count.
Definition ndot_eq : @ndot = @ndot_def := proj2_sig ndot_aux.

Definition nclose_def (N : namespace) : coPset := coPset_suffixes (encode N).
Definition nclose_aux : { x | x = @nclose_def }. by eexists. Qed.
Coercion nclose := proj1_sig nclose_aux.
Definition nclose_eq : @nclose = @nclose_def := proj2_sig nclose_aux.
21

Ralf Jung's avatar
Ralf Jung committed
22
23
Infix ".@" := ndot (at level 19, left associativity) : C_scope.
Notation "(.@)" := ndot (only parsing) : C_scope.
Ralf Jung's avatar
Ralf Jung committed
24

25
Instance ndot_inj `{Countable A} : Inj2 (=) (=) (=) (@ndot A _ _).
26
Proof. intros N1 x1 N2 x2; rewrite !ndot_eq=> ?; by simplify_eq. Qed.
27
Lemma nclose_nroot : nclose nroot = .
28
Proof. rewrite nclose_eq. by apply (sig_eq_pi _). Qed.
29
Lemma encode_nclose N : encode N  nclose N.
30
31
32
33
Proof.
  rewrite nclose_eq.
  by apply elem_coPset_suffixes; exists xH; rewrite (left_id_L _ _).
Qed.
Ralf Jung's avatar
Ralf Jung committed
34
Lemma nclose_subseteq `{Countable A} N x : nclose (N .@ x)  nclose N.
35
Proof.
36
37
38
  intros p; rewrite nclose_eq /nclose !ndot_eq !elem_coPset_suffixes.
  intros [q ->]. destruct (list_encode_suffix N (ndot_def N x)) as [q' ?].
  { by exists [encode x]. }
39
40
  by exists (q ++ q')%positive; rewrite <-(assoc_L _); f_equal.
Qed.
Ralf Jung's avatar
Ralf Jung committed
41
Lemma ndot_nclose `{Countable A} N x : encode (N .@ x)  nclose N.
42
Proof. apply nclose_subseteq with x, encode_nclose. Qed.
43
44
Lemma nclose_infinite N : ¬set_finite (nclose N).
Proof. rewrite nclose_eq. apply coPset_suffixes_infinite. Qed.
45
46
47
48

Instance ndisjoint : Disjoint namespace := λ N1 N2,
   N1' N2', N1' `suffix_of` N1  N2' `suffix_of` N2 
             length N1' = length N2'  N1'  N2'.
49
Typeclasses Opaque ndisjoint.
50
51
52
53
54

Section ndisjoint.
  Context `{Countable A}.
  Implicit Types x y : A.

Robbert Krebbers's avatar
Robbert Krebbers committed
55
  Global Instance ndisjoint_symmetric : Symmetric ndisjoint.
56
57
  Proof. intros N1 N2. rewrite /disjoint /ndisjoint; naive_solver. Qed.

58
  Lemma ndot_ne_disjoint N x y : x  y  N .@ x  N .@ y.
59
  Proof. intros. exists (N .@ x), (N .@ y); rewrite ndot_eq; naive_solver. Qed.
60

Ralf Jung's avatar
Ralf Jung committed
61
  Lemma ndot_preserve_disjoint_l N1 N2 x : N1  N2  N1 .@ x  N2.
62
63
  Proof.
    intros (N1' & N2' & Hpr1 & Hpr2 & Hl & Hne). exists N1', N2'.
64
    split_and?; try done; []. rewrite ndot_eq. by apply suffix_of_cons_r.
65
66
  Qed.

Ralf Jung's avatar
Ralf Jung committed
67
  Lemma ndot_preserve_disjoint_r N1 N2 x : N1  N2  N1  N2 .@ x .
Robbert Krebbers's avatar
Robbert Krebbers committed
68
  Proof. intros. by apply symmetry, ndot_preserve_disjoint_l. Qed.
69

Robbert Krebbers's avatar
Robbert Krebbers committed
70
  Lemma ndisj_disjoint N1 N2 : N1  N2  nclose N1  nclose N2.
71
  Proof.
72
73
    intros (N1' & N2' & [N1'' ->] & [N2'' ->] & Hl & Hne) p.
    rewrite nclose_eq /nclose.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
75
    rewrite !elem_coPset_suffixes; intros [q ->] [q' Hq]; destruct Hne.
    by rewrite !list_encode_app !assoc in Hq; apply list_encode_suffix_eq in Hq.
76
  Qed.
77
78
79
80

  Lemma ndisj_subseteq_difference N1 N2 E :
    N1  N2  nclose N1  E  nclose N1  E  nclose N2.
  Proof. intros ?%ndisj_disjoint. set_solver. Qed.
81
82
83
End ndisjoint.

(* The hope is that registering these will suffice to solve most goals
Robbert Krebbers's avatar
Robbert Krebbers committed
84
of the form [N1 ⊥ N2] and those of the form [N1 ⊆ E ∖ N2 ∖ .. ∖ Nn]. *)
85
Hint Resolve ndisj_subseteq_difference : ndisj.
86
Hint Extern 0 (_  _) => apply ndot_ne_disjoint; congruence : ndisj.
87
88
Hint Resolve ndot_preserve_disjoint_l : ndisj.
Hint Resolve ndot_preserve_disjoint_r : ndisj.
89

90
Ltac solve_ndisj := solve [eauto with ndisj].