ofe.v 45 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22

23
Tactic Notation "ofe_subst" ident(x) :=
24
  repeat match goal with
25
  | _ => progress simplify_eq/=
26 27 28
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
29
Tactic Notation "ofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32 33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

36
Record OfeMixin A `{Equiv A, Dist A} := {
37
  mixin_equiv_dist x y : x  y   n, x {n} y;
38
  mixin_dist_equivalence n : Equivalence (dist n);
39
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
40 41 42
}.

(** Bundeled version *)
43 44 45 46 47
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
48
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
49
}.
50 51 52 53 54 55 56 57 58
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
(** When declaring instances of subclasses of OFE (like CMRAs and unital CMRAs)
we need Coq to *infer* the canonical OFE instance of a given type and take the
mixin out of it. This makes sure we do not use two different OFE instances in
different places (see for example the constructors [CMRAT] and [UCMRAT] in the
file [cmra.v].)

In order to infer the OFE instance, we use the definition [ofe_mixin_of'] which
is inspired by the [clone] trick in ssreflect. It works as follows, when type
checking [@ofe_mixin_of' A ?Ac id] Coq faces a unification problem:

  ofe_car ?Ac  ~  A

which will resolve [?Ac] to the canonical OFE instance corresponding to [A]. The
definition [@ofe_mixin_of' A ?Ac id] will then provide the corresponding mixin.
Note that type checking of [ofe_mixin_of' A id] will fail when [A] does not have
a canonical OFE instance.

The notation [ofe_mixin_of A] that we define on top of [ofe_mixin_of' A id]
hides the [id] and normalizes the mixin to head normal form. The latter is to
ensure that we do not end up with redundant canonical projections to the mixin,
i.e. them all being of the shape [ofe_mixin_of' A id]. *)
Definition ofe_mixin_of' A {Ac : ofeT} (f : Ac  A) : OfeMixin Ac := ofe_mixin Ac.
Notation ofe_mixin_of A :=
  ltac:(let H := eval hnf in (ofe_mixin_of' A id) in exact H) (only parsing).

85
(** Lifting properties from the mixin *)
86 87
Section ofe_mixin.
  Context {A : ofeT}.
88
  Implicit Types x y : A.
89
  Lemma equiv_dist x y : x  y   n, x {n} y.
90
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
91
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
92
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
93
  Lemma dist_S n x y : x {S n} y  x {n} y.
94 95
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
96

Robbert Krebbers's avatar
Robbert Krebbers committed
97 98
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

99
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
100
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
101
   more sense. *)
102 103 104
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.
105
Instance: Params (@Timeless) 1.
106

107 108 109 110 111 112 113 114 115 116
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

117
Program Definition chain_map {A B : ofeT} (f : A  B)
118
    `{!NonExpansive f} (c : chain A) : chain B :=
119 120 121
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

122 123 124 125 126 127
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
128

129
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c `(NonExpansive f) :
130 131 132
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
133
(** General properties *)
134
Section ofe.
135
  Context {A : ofeT}.
136
  Implicit Types x y : A.
137
  Global Instance ofe_equivalence : Equivalence (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
138 139
  Proof.
    split.
140 141
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
142
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  Qed.
144
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
145 146
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
147 148
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
149
  Qed.
150
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
151
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154 155
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
156 157 158
  Global Instance Timeless_proper : Proper (() ==> iff) (@Timeless A).
  Proof. intros x y Hxy. rewrite /Timeless. by setoid_rewrite Hxy. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
159
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
160
  Proof. induction 2; eauto using dist_S. Qed.
161 162
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
163 164
  Instance ne_proper {B : ofeT} (f : A  B) `{!NonExpansive f} :
    Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
166
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C) `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
167 168 169
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
171
  Qed.
172

173
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
174 175 176 177
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
178 179
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
181
  Qed.
182
End ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
183

184
(** Contractive functions *)
185 186 187 188 189 190 191
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

192 193 194
Lemma dist_dist_later {A : ofeT} n (x y : A) : dist n x y  dist_later n x y.
Proof. intros Heq. destruct n; first done. exact: dist_S. Qed.

195
Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
196

197
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
198 199
Proof. by intros n y1 y2. Qed.

200
Section contractive.
201
  Local Set Default Proof Using "Type*".
202 203 204 205
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
206
  Proof. by apply (_ : Contractive f). Qed.
207
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
208
  Proof. intros. by apply (_ : Contractive f). Qed.
209

210 211
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
212 213 214 215
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

216 217 218 219 220 221 222
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
223 224
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
225 226 227
  end;
  try reflexivity.

Ralf Jung's avatar
Ralf Jung committed
228
Ltac solve_contractive := solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]).
Robbert Krebbers's avatar
Robbert Krebbers committed
229

Robbert Krebbers's avatar
Robbert Krebbers committed
230
(** Fixpoint *)
231
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
232
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
Next Obligation.
234
  intros A ? f ? n.
235
  induction n as [|n IH]=> -[|i] //= ?; try omega.
236 237
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
Qed.
239

240
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
241
  `{!Contractive f} : A := compl (fixpoint_chain f).
242 243 244
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
245 246

Section fixpoint.
247
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
248

249
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
250
  Proof.
251 252
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
253
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
254
  Qed.
255 256 257

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
258 259 260
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
261 262
  Qed.

263
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
264
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
265
  Proof.
266
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
267
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
268 269
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
270
  Qed.
271 272
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
273
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
274 275

  Lemma fixpoint_ind (P : A  Prop) :
276
    Proper (() ==> impl) P 
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
292 293
End fixpoint.

294 295 296
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
297

298
Section fixpointK.
299
  Local Set Default Proof Using "Type*".
300 301
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
  Context `{f_contractive : !Contractive (Nat.iter k f)}.
302
  (* TODO: Can we get rid of this assumption, derive it from contractivity? *)
303
  Context {f_ne : NonExpansive f}.
304 305 306

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
  Existing Instance f_proper.
307

308
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
309
  Proof.
310 311
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
312 313
  Qed.

314
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
315
  Proof.
316 317
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
318 319
  Qed.

320
  Section fixpointK_ne.
321
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
322
    Context {g_ne : NonExpansive g}.
323

324
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
325
    Proof.
326 327 328
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
329 330
    Qed.

331 332 333
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
Ralf Jung's avatar
Ralf Jung committed
334 335 336 337 338 339 340 341 342 343

  Lemma fixpointK_ind (P : A  Prop) :
    Proper (() ==> impl) P 
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpointK k f).
  Proof.
    intros ? Hst Hincr Hlim. rewrite /fixpointK. eapply fixpoint_ind; [done..| |done].
    clear- Hincr. intros. induction k; first done. simpl. auto.
  Qed.
344
End fixpointK.
345

Robbert Krebbers's avatar
Robbert Krebbers committed
346
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
347
Section fixpointAB.
348 349
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
391
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
392

Ralf Jung's avatar
Ralf Jung committed
393
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
425
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
426

427
(** Function space *)
428
(* We make [ofe_fun] a definition so that we can register it as a canonical
429
structure. *)
430
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
431

432 433 434 435 436
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
437 438 439 440 441 442 443 444 445 446
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
447
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
448

449 450 451 452 453 454 455 456 457
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
458
Notation "A -c> B" :=
459 460
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
461 462
  Inhabited (A -c> B) := populate (λ _, inhabitant).

463
(** Non-expansive function space *)
464 465
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
466
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
467 468
}.
Arguments CofeMor {_ _} _ {_}.
469 470
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
471

472 473 474 475
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

476 477 478 479 480 481 482
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
483 484
  Proof.
    split.
485
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
486
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
487
    - intros n; split.
488 489
      + by intros f x.
      + by intros f g ? x.
490
      + by intros f g h ?? x; trans (g x).
491
    - by intros n f g ? x; apply dist_S.
492
  Qed.
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
510

511 512 513
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
514 515 516
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
517
  Proof. done. Qed.
518
End ofe_mor.
519

520
Arguments ofe_morC : clear implicits.
521
Notation "A -n> B" :=
522 523
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
524
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
525

526
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
527 528
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
529
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
530
Instance: Params (@cconst) 2.
531

Robbert Krebbers's avatar
Robbert Krebbers committed
532 533 534 535 536
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
537
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
538
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
539

Ralf Jung's avatar
Ralf Jung committed
540
(* Function space maps *)
541
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
542
  (h : A -n> B) : A' -n> B' := g  h  f.
543 544
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
545
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
546

547 548
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
549 550
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
551
Proof.
552
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
553
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
554 555
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
556
(** unit *)
557 558
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
559
  Definition unit_ofe_mixin : OfeMixin unit.
560
  Proof. by repeat split; try exists 0. Qed.
561
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
562

563 564
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
565 566

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
567
  Proof. done. Qed.
568
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
569 570

(** Product *)
571
Section product.
572
  Context {A B : ofeT}.
573 574 575

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
576 577 578
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
579
  Definition prod_ofe_mixin : OfeMixin (A * B).
580 581
  Proof.
    split.
582
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
583
      rewrite !equiv_dist; naive_solver.
584 585
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
586
  Qed.
587 588 589 590 591 592 593 594 595
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

596 597 598
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
599 600
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
601 602 603 604 605
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

606
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
607 608 609 610 611
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
612 613 614
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
615

616 617
(** Functors *)
Structure cFunctor := CFunctor {
618
  cFunctor_car : ofeT  ofeT  ofeT;
619 620
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
621 622
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
623
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
624 625 626 627 628
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
629
Existing Instance cFunctor_ne.
630 631
Instance: Params (@cFunctor_map) 5.

632 633 634
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

635 636 637
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

638
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
639 640
Coercion cFunctor_diag : cFunctor >-> Funclass.

641
Program Definition constCF (B : ofeT) : cFunctor :=
642 643
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
644
Coercion constCF : ofeT >-> cFunctor.
645

646
Instance constCF_contractive B : cFunctorContractive (constCF B).
647
Proof. rewrite /cFunctorContractive; apply _. Qed.
648 649 650 651

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
652
Notation "∙" := idCF : cFunctor_scope.
653

654 655 656 657 658
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
659 660 661
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
662 663 664 665 666
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
667
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
668

669 670 671 672 673 674 675 676
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

677 678 679
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') :
  NonExpansive (compose f : (A -c> B)  A -c> B').
Proof. intros n g g' Hf x; simpl. by rewrite (Hf x). Qed.
680

681
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
682
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
683 684 685
Instance ofe_funC_map_ne {A B B'} :
  NonExpansive (@ofe_funC_map A B B').
Proof. intros n f f' Hf g x. apply Hf. Qed.
686

687 688 689
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
690 691
|}.
Next Obligation.
692
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
693 694 695 696 697 698
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
699
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
700

701 702
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
703 704
Proof.
  intros ?? A1 A2 B1 B2 n ???;
705
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
706 707
Qed.

708
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
709
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
710
  cFunctor_map A1 A2 B1 B2 fg :=
711
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
712
|}.
713 714
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
715
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
716
Qed.
Ralf Jung's avatar
Ralf Jung committed
717
Next Obligation.
718 719
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
720 721
Qed.
Next Obligation.
722 723
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
724
Qed.
725
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
726

727
Instance ofe_morCF_contractive F1 F2 :
728
  cFunctorContractive F1  cFunctorContractive F2 
729
  cFunctorContractive (ofe_morCF F1 F2).
730 731
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
732
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
733 734
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
735 736
(** Sum *)
Section sum.
737
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
738 739

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
740 741
  Global Instance inl_ne : NonExpansive (@inl A B) := _.
  Global Instance inr_ne : NonExpansive (@inr A B) := _.
Robbert Krebbers's avatar
Robbert Krebbers committed
742 743 744
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

745 746 747 748 749 750 751 752 753 754 755 756
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program <