cofe_solver.v 10.2 KB
Newer Older
1
From iris.algebra Require Export ofe.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
Record solution (F : cFunctor) := Solution {
5 6
  solution_car :> ofeT;
  solution_cofe : Cofe solution_car;
7 8
  solution_unfold : solution_car -n> F solution_car _;
  solution_fold : F solution_car _ -n> solution_car;
9 10 11 12 13
  solution_fold_unfold X : solution_fold (solution_unfold X)  X;
  solution_unfold_fold X : solution_unfold (solution_fold X)  X
}.
Arguments solution_unfold {_} _.
Arguments solution_fold {_} _.
14
Existing Instance solution_cofe.
15 16

Module solver. Section solver.
17 18 19
Context (F : cFunctor) `{Fcontr : cFunctorContractive F}.
Context `{Fcofe :  (T : ofeT) `{!Cofe T}, Cofe (F T _)}.
Context `{Finh : Inhabited (F unitC _)}.
20
Notation map := (cFunctor_map F).
Robbert Krebbers's avatar
Robbert Krebbers committed
21

22 23 24 25 26 27 28 29
Fixpoint A' (k : nat) : { C : ofeT & Cofe C } :=
  match k with
  | 0 => existT (P:=Cofe) unitC _
  | S k => existT (P:=Cofe) (F (projT1 (A' k)) (projT2 (A' k))) _
  end.
Notation A k := (projT1 (A' k)).
Local Instance A_cofe k : Cofe (A k) := projT2 (A' k).

30 31 32 33 34 35 36 37 38 39
Fixpoint f (k : nat) : A k -n> A (S k) :=
  match k with 0 => CofeMor (λ _, inhabitant) | S k => map (g k,f k) end
with g (k : nat) : A (S k) -n> A k :=
  match k with 0 => CofeMor (λ _, ()) | S k => map (f k,g k) end.
Definition f_S k (x : A (S k)) : f (S k) x = map (g k,f k) x := eq_refl.
Definition g_S k (x : A (S (S k))) : g (S k) x = map (f k,g k) x := eq_refl.
Arguments f : simpl never.
Arguments g : simpl never.

Lemma gf {k} (x : A k) : g k (f k x)  x.
40
Proof using Fcontr.
Robbert Krebbers's avatar
Robbert Krebbers committed
41
  induction k as [|k IH]; simpl in *; [by destruct x|].
42
  rewrite -cFunctor_compose -{2}[x]cFunctor_id. by apply (contractive_proper map).
Robbert Krebbers's avatar
Robbert Krebbers committed
43
Qed.
44
Lemma fg {k} (x : A (S (S k))) : f (S k) (g (S k) x) {k} x.
45
Proof using Fcontr.
46
  induction k as [|k IH]; simpl.
47 48 49 50
  - rewrite f_S g_S -{2}[x]cFunctor_id -cFunctor_compose.
    apply (contractive_0 map).
  - rewrite f_S g_S -{2}[x]cFunctor_id -cFunctor_compose.
    by apply (contractive_S map).
Robbert Krebbers's avatar
Robbert Krebbers committed
51 52 53 54
Qed.

Record tower := {
  tower_car k :> A k;
55
  g_tower k : g k (tower_car (S k))  tower_car k
Robbert Krebbers's avatar
Robbert Krebbers committed
56 57
}.
Instance tower_equiv : Equiv tower := λ X Y,  k, X k  Y k.
58
Instance tower_dist : Dist tower := λ n X Y,  k, X k {n} Y k.
59
Definition tower_ofe_mixin : OfeMixin tower.
Robbert Krebbers's avatar
Robbert Krebbers committed
60 61
Proof.
  split.
62
  - intros X Y; split; [by intros HXY n k; apply equiv_dist|].
Robbert Krebbers's avatar
Robbert Krebbers committed
63
    intros HXY k; apply equiv_dist; intros n; apply HXY.
64
  - intros k; split.
Robbert Krebbers's avatar
Robbert Krebbers committed
65 66
    + by intros X n.
    + by intros X Y ? n.
67
    + by intros X Y Z ?? n; trans (Y n).
68
  - intros k X Y HXY n; apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
69
    by rewrite -(g_tower X) (HXY (S n)) g_tower.
Robbert Krebbers's avatar
Robbert Krebbers committed
70
Qed.
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
Definition T : ofeT := OfeT tower tower_ofe_mixin.

Program Definition tower_chain (c : chain T) (k : nat) : chain (A k) :=
  {| chain_car i := c i k |}.
Next Obligation. intros c k n i ?; apply (chain_cauchy c n); lia. Qed.
Program Definition tower_compl : Compl T := λ c,
  {| tower_car n := compl (tower_chain c n) |}.
Next Obligation.
  intros c k; apply equiv_dist=> n.
  by rewrite (conv_compl n (tower_chain c k))
    (conv_compl n (tower_chain c (S k))) /= (g_tower (c _) k).
Qed.
Global Program Instance tower_cofe : Cofe T := { compl := tower_compl }.
Next Obligation.
  intros n c k; rewrite /= (conv_compl n (tower_chain c k)).
  apply (chain_cauchy c); lia.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
88 89

Fixpoint ff {k} (i : nat) : A k -n> A (i + k) :=
90
  match i with 0 => cid | S i => f (i + k)  ff i end.
Robbert Krebbers's avatar
Robbert Krebbers committed
91
Fixpoint gg {k} (i : nat) : A (i + k) -n> A k :=
92
  match i with 0 => cid | S i => gg i  g (i + k) end.
Robbert Krebbers's avatar
Robbert Krebbers committed
93
Lemma ggff {k i} (x : A k) : gg i (ff i x)  x.
94
Proof using Fcontr. induction i as [|i IH]; simpl; [done|by rewrite (gf (ff i x)) IH]. Qed.
95
Lemma f_tower k (X : tower) : f (S k) (X (S k)) {k} X (S (S k)).
96
Proof using Fcontr. intros. by rewrite -(fg (X (S (S k)))) -(g_tower X). Qed.
97
Lemma ff_tower k i (X : tower) : ff i (X (S k)) {k} X (i + S k).
98
Proof using Fcontr.
Robbert Krebbers's avatar
Robbert Krebbers committed
99
  intros; induction i as [|i IH]; simpl; [done|].
Ralf Jung's avatar
Ralf Jung committed
100
  by rewrite IH Nat.add_succ_r (dist_le _ _ _ _ (f_tower _ X)); last lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102
Qed.
Lemma gg_tower k i (X : tower) : gg i (X (i + k))  X k.
Robbert Krebbers's avatar
Robbert Krebbers committed
103
Proof. by induction i as [|i IH]; simpl; [done|rewrite g_tower IH]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
104

105
Instance tower_car_ne k : NonExpansive (λ X, tower_car X k).
Robbert Krebbers's avatar
Robbert Krebbers committed
106 107 108 109 110 111 112 113 114 115 116
Proof. by intros X Y HX. Qed.
Definition project (k : nat) : T -n> A k := CofeMor (λ X : T, tower_car X k).

Definition coerce {i j} (H : i = j) : A i -n> A j :=
  eq_rect _ (λ i', A i -n> A i') cid _ H.
Lemma coerce_id {i} (H : i = i) (x : A i) : coerce H x = x.
Proof. unfold coerce. by rewrite (proof_irrel H (eq_refl i)). Qed.
Lemma coerce_proper {i j} (x y : A i) (H1 H2 : i = j) :
  x = y  coerce H1 x = coerce H2 y.
Proof. by destruct H1; rewrite !coerce_id. Qed.
Lemma g_coerce {k j} (H : S k = S j) (x : A (S k)) :
117
  g j (coerce H x) = coerce (Nat.succ_inj _ _ H) (g k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
Proof. by assert (k = j) by lia; subst; rewrite !coerce_id. Qed.
Lemma coerce_f {k j} (H : S k = S j) (x : A k) :
120
  coerce H (f k x) = f j (coerce (Nat.succ_inj _ _ H) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
121
Proof. by assert (k = j) by lia; subst; rewrite !coerce_id. Qed.
122
Lemma gg_gg {k i i1 i2 j} :  (H1: k = i + j) (H2: k = i2 + (i1 + j)) (x: A k),
Robbert Krebbers's avatar
Robbert Krebbers committed
123 124
  gg i (coerce H1 x) = gg i1 (gg i2 (coerce H2 x)).
Proof.
125
  intros ? -> x. assert (i = i2 + i1) as -> by lia. revert j x H1.
126
  induction i2 as [|i2 IH]; intros j X H1; simplify_eq/=;
Robbert Krebbers's avatar
Robbert Krebbers committed
127
    [by rewrite coerce_id|by rewrite g_coerce IH].
Robbert Krebbers's avatar
Robbert Krebbers committed
128
Qed.
129
Lemma ff_ff {k i i1 i2 j} :  (H1: i + k = j) (H2: i1 + (i2 + k) = j) (x: A k),
Robbert Krebbers's avatar
Robbert Krebbers committed
130 131
  coerce H1 (ff i x) = coerce H2 (ff i1 (ff i2 x)).
Proof.
132
  intros ? <- x. assert (i = i1 + i2) as -> by lia.
133
  induction i1 as [|i1 IH]; simplify_eq/=;
Robbert Krebbers's avatar
Robbert Krebbers committed
134
    [by rewrite coerce_id|by rewrite coerce_f IH].
Robbert Krebbers's avatar
Robbert Krebbers committed
135 136
Qed.

137
Definition embed_coerce {k} (i : nat) : A k -n> A i :=
Robbert Krebbers's avatar
Robbert Krebbers committed
138 139 140 141
  match le_lt_dec i k with
  | left H => gg (k-i)  coerce (eq_sym (Nat.sub_add _ _ H))
  | right H => coerce (Nat.sub_add k i (Nat.lt_le_incl _ _ H))  ff (i-k)
  end.
142 143
Lemma g_embed_coerce {k i} (x : A k) :
  g i (embed_coerce (S i) x)  embed_coerce i x.
144
Proof using Fcontr.
145
  unfold embed_coerce; destruct (le_lt_dec (S i) k), (le_lt_dec i k); simpl.
146 147 148
  - symmetry; by erewrite (@gg_gg _ _ 1 (k - S i)); simpl.
  - exfalso; lia.
  - assert (i = k) by lia; subst.
Robbert Krebbers's avatar
Robbert Krebbers committed
149
    rewrite (ff_ff _ (eq_refl (1 + (0 + k)))) /= gf.
Robbert Krebbers's avatar
Robbert Krebbers committed
150
    by rewrite (gg_gg _ (eq_refl (0 + (0 + k)))).
151
  - assert (H : 1 + ((i - k) + k) = S i) by lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
152
    rewrite (ff_ff _ H) /= -{2}(gf (ff (i - k) x)) g_coerce.
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154
    by erewrite coerce_proper by done.
Qed.
155 156 157
Program Definition embed (k : nat) (x : A k) : T :=
  {| tower_car n := embed_coerce n x |}.
Next Obligation. intros k x i. apply g_embed_coerce. Qed.
158
Instance: Params (@embed) 1 := {}.
159 160
Instance embed_ne k : NonExpansive (embed k).
Proof. by intros n x y Hxy i; rewrite /= Hxy. Qed.
161 162
Definition embed' (k : nat) : A k -n> T := CofeMor (embed k).
Lemma embed_f k (x : A k) : embed (S k) (f k x)  embed k x.
Robbert Krebbers's avatar
Robbert Krebbers committed
163
Proof.
164
  rewrite equiv_dist=> n i; rewrite /embed /= /embed_coerce.
Robbert Krebbers's avatar
Robbert Krebbers committed
165
  destruct (le_lt_dec i (S k)), (le_lt_dec i k); simpl.
166
  - assert (H : S k = S (k - i) + (0 + i)) by lia; rewrite (gg_gg _ H) /=.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
    by erewrite g_coerce, gf, coerce_proper by done.
168
  - assert (S k = 0 + (0 + i)) as H by lia.
169
    rewrite (gg_gg _ H); simplify_eq/=.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
    by rewrite (ff_ff _ (eq_refl (1 + (0 + k)))).
171 172
  - exfalso; lia.
  - assert (H : (i - S k) + (1 + k) = i) by lia; rewrite (ff_ff _ H) /=.
Robbert Krebbers's avatar
Robbert Krebbers committed
173 174
    by erewrite coerce_proper by done.
Qed.
175
Lemma embed_tower k (X : T) : embed (S k) (X (S k)) {k} X.
Robbert Krebbers's avatar
Robbert Krebbers committed
176
Proof.
177 178
  intros i; rewrite /= /embed_coerce.
  destruct (le_lt_dec i (S k)) as [H|H]; simpl.
179
  - rewrite -(gg_tower i (S k - i) X).
Robbert Krebbers's avatar
Robbert Krebbers committed
180
    apply (_ : Proper (_ ==> _) (gg _)); by destruct (eq_sym _).
181
  - rewrite (ff_tower k (i - S k) X). by destruct (Nat.sub_add _ _ _).
Robbert Krebbers's avatar
Robbert Krebbers committed
182 183
Qed.

184
Program Definition unfold_chain (X : T) : chain (F T _) :=
185
  {| chain_car n := map (project n,embed' n) (X (S n)) |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
186 187 188
Next Obligation.
  intros X n i Hi.
  assert ( k, i = k + n) as [k ?] by (exists (i - n); lia); subst; clear Hi.
189
  induction k as [|k IH]; simpl; first done.
190
  rewrite -IH -(dist_le _ _ _ _ (f_tower (k + n) _)); last lia.
191
  rewrite f_S -cFunctor_compose.
192
  by apply (contractive_ne map); split=> Y /=; rewrite ?g_tower ?embed_f.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
Qed.
194
Definition unfold (X : T) : F T _ := compl (unfold_chain X).
195
Instance unfold_ne : NonExpansive unfold.
196
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
197
  intros n X Y HXY. by rewrite /unfold (conv_compl n (unfold_chain X))
198
    (conv_compl n (unfold_chain Y)) /= (HXY (S n)).
199
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
200

201
Program Definition fold (X : F T _) : T :=
202
  {| tower_car n := g n (map (embed' n,project n) X) |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
Next Obligation.
204
  intros X k. apply (_ : Proper (() ==> ()) (g k)).
205
  rewrite g_S -cFunctor_compose.
206
  apply (contractive_proper map); split=> Y; [apply embed_f|apply g_tower].
Robbert Krebbers's avatar
Robbert Krebbers committed
207
Qed.
208
Instance fold_ne : NonExpansive fold.
209
Proof. by intros n X Y HXY k; rewrite /fold /= HXY. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
210

211
Theorem result : solution F.
212
Proof using Type*.
213
  apply (Solution F T _ (CofeMor unfold) (CofeMor fold)).
214
  - move=> X /=. rewrite equiv_dist=> n k; rewrite /unfold /fold /=.
215
    rewrite -g_tower -(gg_tower _ n); apply (_ : Proper (_ ==> _) (g _)).
216
    trans (map (ff n, gg n) (X (S (n + k)))).
Robbert Krebbers's avatar
Robbert Krebbers committed
217
    { rewrite /unfold (conv_compl n (unfold_chain X)).
218 219
      rewrite -(chain_cauchy (unfold_chain X) n (S (n + k))) /=; last lia.
      rewrite -(dist_le _ _ _ _ (f_tower (n + k) _)); last lia.
220
      rewrite f_S -!cFunctor_compose; apply (contractive_ne map); split=> Y.
221 222 223 224 225 226 227 228 229
      + rewrite /embed' /= /embed_coerce.
        destruct (le_lt_dec _ _); simpl; [exfalso; lia|].
        by rewrite (ff_ff _ (eq_refl (S n + (0 + k)))) /= gf.
      + rewrite /embed' /= /embed_coerce.
        destruct (le_lt_dec _ _); simpl; [|exfalso; lia].
        by rewrite (gg_gg _ (eq_refl (0 + (S n + k)))) /= gf. }
    assert ( i k (x : A (S i + k)) (H : S i + k = i + S k),
      map (ff i, gg i) x  gg i (coerce H x)) as map_ff_gg.
    { intros i; induction i as [|i IH]; intros k' x H; simpl.
230 231
      { by rewrite coerce_id cFunctor_id. }
      rewrite cFunctor_compose g_coerce; apply IH. }
232 233
    assert (H: S n + k = n + S k) by lia.
    rewrite (map_ff_gg _ _ _ H).
234
    apply (_ : Proper (_ ==> _) (gg _)); by destruct H.
235
  - intros X; rewrite equiv_dist=> n /=.
236
    rewrite /unfold /= (conv_compl' n (unfold_chain (fold X))) /=.
237
    rewrite g_S -!cFunctor_compose -{2}[X]cFunctor_id.
238
    apply (contractive_ne map); split => Y /=.
239
    + rewrite f_tower. apply dist_S. by rewrite embed_tower.
240
    + etrans; [apply embed_ne, equiv_dist, g_tower|apply embed_tower].
Robbert Krebbers's avatar
Robbert Krebbers committed
241
Qed.
242
End solver. End solver.