cmra.v 50.9 KB
Newer Older
1
From iris.algebra Require Export ofe.
2
Set Default Proof Using "Type*".
3

Robbert Krebbers's avatar
Robbert Krebbers committed
4
5
Class PCore (A : Type) := pcore : A  option A.
Instance: Params (@pcore) 2.
6
7
8
9
10
11

Class Op (A : Type) := op : A  A  A.
Instance: Params (@op) 2.
Infix "⋅" := op (at level 50, left associativity) : C_scope.
Notation "(⋅)" := op (only parsing) : C_scope.

12
13
14
15
16
(* The inclusion quantifies over [A], not [option A].  This means we do not get
   reflexivity.  However, if we used [option A], the following would no longer
   hold:
     x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2
*)
17
18
19
Definition included `{Equiv A, Op A} (x y : A) :=  z, y  x  z.
Infix "≼" := included (at level 70) : C_scope.
Notation "(≼)" := included (only parsing) : C_scope.
20
Hint Extern 0 (_  _) => reflexivity.
21
22
Instance: Params (@included) 3.

Robbert Krebbers's avatar
Robbert Krebbers committed
23
24
Class ValidN (A : Type) := validN : nat  A  Prop.
Instance: Params (@validN) 3.
25
Notation "✓{ n } x" := (validN n x)
26
  (at level 20, n at next level, format "✓{ n }  x").
Robbert Krebbers's avatar
Robbert Krebbers committed
27

28
29
Class Valid (A : Type) := valid : A  Prop.
Instance: Params (@valid) 2.
30
Notation "✓ x" := (valid x) (at level 20) : C_scope.
31

32
Definition includedN `{Dist A, Op A} (n : nat) (x y : A) :=  z, y {n} x  z.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
Notation "x ≼{ n } y" := (includedN n x y)
34
  (at level 70, n at next level, format "x  ≼{ n }  y") : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
Instance: Params (@includedN) 4.
36
Hint Extern 0 (_ {_} _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
37

Robbert Krebbers's avatar
Robbert Krebbers committed
38
Record CMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A} := {
Robbert Krebbers's avatar
Robbert Krebbers committed
39
  (* setoids *)
40
  mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x);
Robbert Krebbers's avatar
Robbert Krebbers committed
41
42
  mixin_cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy;
43
  mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n);
Robbert Krebbers's avatar
Robbert Krebbers committed
44
  (* valid *)
45
  mixin_cmra_valid_validN x :  x   n, {n} x;
46
  mixin_cmra_validN_S n x : {S n} x  {n} x;
Robbert Krebbers's avatar
Robbert Krebbers committed
47
  (* monoid *)
48
49
  mixin_cmra_assoc : Assoc () ();
  mixin_cmra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
50
51
  mixin_cmra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  mixin_cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
52
  mixin_cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
53
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
54
  mixin_cmra_validN_op_l n x y : {n} (x  y)  {n} x;
55
56
  mixin_cmra_extend n x y1 y2 :
    {n} x  x {n} y1  y2 
57
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2
Robbert Krebbers's avatar
Robbert Krebbers committed
58
}.
Robbert Krebbers's avatar
Robbert Krebbers committed
59

Robbert Krebbers's avatar
Robbert Krebbers committed
60
(** Bundeled version *)
61
Structure cmraT := CMRAT' {
Robbert Krebbers's avatar
Robbert Krebbers committed
62
63
64
  cmra_car :> Type;
  cmra_equiv : Equiv cmra_car;
  cmra_dist : Dist cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
65
  cmra_pcore : PCore cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
66
  cmra_op : Op cmra_car;
67
  cmra_valid : Valid cmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
68
  cmra_validN : ValidN cmra_car;
69
  cmra_ofe_mixin : OfeMixin cmra_car;
70
  cmra_mixin : CMRAMixin cmra_car;
71
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
72
}.
73
Arguments CMRAT' _ {_ _ _ _ _ _} _ _ _.
74
Notation CMRAT A m m' := (CMRAT' A m m' A).
75
76
77
Arguments cmra_car : simpl never.
Arguments cmra_equiv : simpl never.
Arguments cmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Arguments cmra_pcore : simpl never.
79
Arguments cmra_op : simpl never.
80
Arguments cmra_valid : simpl never.
81
Arguments cmra_validN : simpl never.
82
Arguments cmra_ofe_mixin : simpl never.
83
Arguments cmra_mixin : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
84
Add Printing Constructor cmraT.
85
86
87
88
Hint Extern 0 (PCore _) => eapply (@cmra_pcore _) : typeclass_instances.
Hint Extern 0 (Op _) => eapply (@cmra_op _) : typeclass_instances.
Hint Extern 0 (Valid _) => eapply (@cmra_valid _) : typeclass_instances.
Hint Extern 0 (ValidN _) => eapply (@cmra_validN _) : typeclass_instances.
89
90
Coercion cmra_ofeC (A : cmraT) : ofeT := OfeT A (cmra_ofe_mixin A).
Canonical Structure cmra_ofeC.
Robbert Krebbers's avatar
Robbert Krebbers committed
91

92
93
94
95
96
97
(** Lifting properties from the mixin *)
Section cmra_mixin.
  Context {A : cmraT}.
  Implicit Types x y : A.
  Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x).
  Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
98
99
100
  Lemma cmra_pcore_ne n x y cx :
    x {n} y  pcore x = Some cx   cy, pcore y = Some cy  cx {n} cy.
  Proof. apply (mixin_cmra_pcore_ne _ (cmra_mixin A)). Qed.
101
102
  Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n).
  Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed.
103
104
  Lemma cmra_valid_validN x :  x   n, {n} x.
  Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed.
105
106
  Lemma cmra_validN_S n x : {S n} x  {n} x.
  Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed.
107
108
109
110
  Global Instance cmra_assoc : Assoc () (@op A _).
  Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed.
  Global Instance cmra_comm : Comm () (@op A _).
  Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
112
113
114
  Lemma cmra_pcore_l x cx : pcore x = Some cx  cx  x  x.
  Proof. apply (mixin_cmra_pcore_l _ (cmra_mixin A)). Qed.
  Lemma cmra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx.
  Proof. apply (mixin_cmra_pcore_idemp _ (cmra_mixin A)). Qed.
115
  Lemma cmra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
116
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
117
  Proof. apply (mixin_cmra_pcore_mono _ (cmra_mixin A)). Qed.
118
119
  Lemma cmra_validN_op_l n x y : {n} (x  y)  {n} x.
  Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed.
120
  Lemma cmra_extend n x y1 y2 :
121
    {n} x  x {n} y1  y2 
122
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2.
123
  Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed.
124
125
End cmra_mixin.

Robbert Krebbers's avatar
Robbert Krebbers committed
126
127
128
129
130
131
132
133
Definition opM {A : cmraT} (x : A) (my : option A) :=
  match my with Some y => x  y | None => x end.
Infix "⋅?" := opM (at level 50, left associativity) : C_scope.

(** * Persistent elements *)
Class Persistent {A : cmraT} (x : A) := persistent : pcore x  Some x.
Arguments persistent {_} _ {_}.

134
(** * Exclusive elements (i.e., elements that cannot have a frame). *)
135
136
Class Exclusive {A : cmraT} (x : A) := exclusive0_l y : {0} (x  y)  False.
Arguments exclusive0_l {_} _ {_} _ _.
137

Robbert Krebbers's avatar
Robbert Krebbers committed
138
139
140
141
142
143
144
145
146
147
148
(** * CMRAs whose core is total *)
(** The function [core] may return a dummy when used on CMRAs without total
core. *)
Class CMRATotal (A : cmraT) := cmra_total (x : A) : is_Some (pcore x).

Class Core (A : Type) := core : A  A.
Instance: Params (@core) 2.

Instance core' `{PCore A} : Core A := λ x, from_option id x (pcore x).
Arguments core' _ _ _ /.

Ralf Jung's avatar
Ralf Jung committed
149
(** * CMRAs with a unit element *)
150
(** We use the notation ∅ because for most instances (maps, sets, etc) the
Ralf Jung's avatar
Ralf Jung committed
151
`empty' element is the unit. *)
Robbert Krebbers's avatar
Robbert Krebbers committed
152
Record UCMRAMixin A `{Dist A, Equiv A, PCore A, Op A, Valid A, Empty A} := {
153
154
  mixin_ucmra_unit_valid :  ;
  mixin_ucmra_unit_left_id : LeftId ()  ();
Robbert Krebbers's avatar
Robbert Krebbers committed
155
  mixin_ucmra_pcore_unit : pcore   Some 
156
}.
157

158
Structure ucmraT := UCMRAT' {
159
160
161
  ucmra_car :> Type;
  ucmra_equiv : Equiv ucmra_car;
  ucmra_dist : Dist ucmra_car;
Robbert Krebbers's avatar
Robbert Krebbers committed
162
  ucmra_pcore : PCore ucmra_car;
163
164
165
166
  ucmra_op : Op ucmra_car;
  ucmra_valid : Valid ucmra_car;
  ucmra_validN : ValidN ucmra_car;
  ucmra_empty : Empty ucmra_car;
167
  ucmra_ofe_mixin : OfeMixin ucmra_car;
168
  ucmra_cmra_mixin : CMRAMixin ucmra_car;
169
  ucmra_mixin : UCMRAMixin ucmra_car;
170
  _ : Type;
171
}.
172
Arguments UCMRAT' _ {_ _ _ _ _ _ _} _ _ _ _.
173
Notation UCMRAT A m m' m'' := (UCMRAT' A m m' m'' A).
174
175
176
Arguments ucmra_car : simpl never.
Arguments ucmra_equiv : simpl never.
Arguments ucmra_dist : simpl never.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
Arguments ucmra_pcore : simpl never.
178
179
180
Arguments ucmra_op : simpl never.
Arguments ucmra_valid : simpl never.
Arguments ucmra_validN : simpl never.
181
Arguments ucmra_ofe_mixin : simpl never.
182
183
184
Arguments ucmra_cmra_mixin : simpl never.
Arguments ucmra_mixin : simpl never.
Add Printing Constructor ucmraT.
185
Hint Extern 0 (Empty _) => eapply (@ucmra_empty _) : typeclass_instances.
186
187
Coercion ucmra_ofeC (A : ucmraT) : ofeT := OfeT A (ucmra_ofe_mixin A).
Canonical Structure ucmra_ofeC.
188
Coercion ucmra_cmraR (A : ucmraT) : cmraT :=
189
  CMRAT A (ucmra_ofe_mixin A) (ucmra_cmra_mixin A).
190
191
192
193
194
195
196
197
198
199
Canonical Structure ucmra_cmraR.

(** Lifting properties from the mixin *)
Section ucmra_mixin.
  Context {A : ucmraT}.
  Implicit Types x y : A.
  Lemma ucmra_unit_valid :  ( : A).
  Proof. apply (mixin_ucmra_unit_valid _ (ucmra_mixin A)). Qed.
  Global Instance ucmra_unit_left_id : LeftId ()  (@op A _).
  Proof. apply (mixin_ucmra_unit_left_id _ (ucmra_mixin A)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
200
201
  Lemma ucmra_pcore_unit : pcore (:A)  Some .
  Proof. apply (mixin_ucmra_pcore_unit _ (ucmra_mixin A)). Qed.
202
End ucmra_mixin.
203

204
(** * Discrete CMRAs *)
205
Class CMRADiscrete (A : cmraT) := {
206
207
208
209
  cmra_discrete :> Discrete A;
  cmra_discrete_valid (x : A) : {0} x   x
}.

Robbert Krebbers's avatar
Robbert Krebbers committed
210
(** * Morphisms *)
211
Class CMRAMonotone {A B : cmraT} (f : A  B) := {
Robbert Krebbers's avatar
Robbert Krebbers committed
212
  cmra_monotone_ne n :> Proper (dist n ==> dist n) f;
213
  cmra_monotone_validN n x : {n} x  {n} f x;
214
  cmra_monotone x y : x  y  f x  f y
215
}.
216
Arguments cmra_monotone_validN {_ _} _ {_} _ _ _.
217
Arguments cmra_monotone {_ _} _ {_} _ _ _.
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
(* Not all intended homomorphisms preserve validity, in particular it does not
hold for the [ownM] and [own] connectives. *)
Class CMRAHomomorphism {A B : cmraT} (f : A  B) := {
  cmra_homomorphism_ne n :> Proper (dist n ==> dist n) f;
  cmra_homomorphism x y : f (x  y)  f x  f y
}.
Arguments cmra_homomorphism {_ _} _ _ _ _.

Class UCMRAHomomorphism {A B : ucmraT} (f : A  B) := {
  ucmra_homomorphism :> CMRAHomomorphism f;
  ucmra_homomorphism_unit : f   
}.
Arguments ucmra_homomorphism_unit {_ _} _ _.

Robbert Krebbers's avatar
Robbert Krebbers committed
233
(** * Properties **)
Robbert Krebbers's avatar
Robbert Krebbers committed
234
Section cmra.
235
Context {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
236
Implicit Types x y z : A.
237
Implicit Types xs ys zs : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
238

239
(** ** Setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
240
241
242
243
244
245
246
247
248
Global Instance cmra_pcore_ne' n : Proper (dist n ==> dist n) (@pcore A _).
Proof.
  intros x y Hxy. destruct (pcore x) as [cx|] eqn:?.
  { destruct (cmra_pcore_ne n x y cx) as (cy&->&->); auto. }
  destruct (pcore y) as [cy|] eqn:?; auto.
  destruct (cmra_pcore_ne n y x cy) as (cx&?&->); simplify_eq/=; auto.
Qed.
Lemma cmra_pcore_proper x y cx :
  x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy.
249
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
250
251
252
  intros. destruct (cmra_pcore_ne 0 x y cx) as (cy&?&?); auto.
  exists cy; split; [done|apply equiv_dist=> n].
  destruct (cmra_pcore_ne n x y cx) as (cy'&?&?); naive_solver.
253
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
254
255
256
257
Global Instance cmra_pcore_proper' : Proper (() ==> ()) (@pcore A _).
Proof. apply (ne_proper _). Qed.
Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed.
258
Global Instance cmra_op_proper' : Proper (() ==> () ==> ()) (@op A _).
259
260
261
262
263
264
265
Proof. apply (ne_proper_2 _). Qed.
Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1.
Proof. by split; apply cmra_validN_ne. Qed.
Global Instance cmra_validN_proper : Proper (() ==> iff) (@validN A _ n) | 1.
Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed.

Global Instance cmra_valid_proper : Proper (() ==> iff) (@valid A _).
266
267
268
269
Proof.
  intros x y Hxy; rewrite !cmra_valid_validN.
  by split=> ? n; [rewrite -Hxy|rewrite Hxy].
Qed.
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
Global Instance cmra_includedN_ne n :
  Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Global Instance cmra_includedN_proper n :
  Proper (() ==> () ==> iff) (@includedN A _ _ n) | 1.
Proof.
  intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy.
  by rewrite (Hx n) (Hy n).
Qed.
Global Instance cmra_included_proper :
  Proper (() ==> () ==> iff) (@included A _ _) | 1.
Proof.
  intros x x' Hx y y' Hy.
  by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy].
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
288
289
290
291
Global Instance cmra_opM_ne n : Proper (dist n ==> dist n ==> dist n) (@opM A).
Proof. destruct 2; by cofe_subst. Qed.
Global Instance cmra_opM_proper : Proper (() ==> () ==> ()) (@opM A).
Proof. destruct 2; by setoid_subst. Qed.
292

Robbert Krebbers's avatar
Robbert Krebbers committed
293
294
295
296
(** ** Op *)
Lemma cmra_opM_assoc x y mz : (x  y) ? mz  x  (y ? mz).
Proof. destruct mz; by rewrite /= -?assoc. Qed.

297
(** ** Validity *)
Robbert Krebbers's avatar
Robbert Krebbers committed
298
Lemma cmra_validN_le n n' x : {n} x  n'  n  {n'} x.
299
300
301
Proof. induction 2; eauto using cmra_validN_S. Qed.
Lemma cmra_valid_op_l x y :  (x  y)   x.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Lemma cmra_validN_op_r n x y : {n} (x  y)  {n} y.
303
Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed.
304
305
306
Lemma cmra_valid_op_r x y :  (x  y)   y.
Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed.

Ralf Jung's avatar
Ralf Jung committed
307
(** ** Core *)
Robbert Krebbers's avatar
Robbert Krebbers committed
308
309
310
311
312
313
314
315
Lemma cmra_pcore_l' x cx : pcore x  Some cx  cx  x  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_l. Qed.
Lemma cmra_pcore_r x cx : pcore x = Some cx  x  cx  x.
Proof. intros. rewrite comm. by apply cmra_pcore_l. Qed. 
Lemma cmra_pcore_r' x cx : pcore x  Some cx  x  cx  x.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. by apply cmra_pcore_r. Qed. 
Lemma cmra_pcore_idemp' x cx : pcore x  Some cx  pcore cx  Some cx.
Proof. intros (cx'&?&->)%equiv_Some_inv_r'. eauto using cmra_pcore_idemp. Qed. 
316
317
318
319
Lemma cmra_pcore_dup x cx : pcore x = Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp. Qed.
Lemma cmra_pcore_dup' x cx : pcore x  Some cx  cx  cx  cx.
Proof. intros; symmetry; eauto using cmra_pcore_r', cmra_pcore_idemp'. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
320
321
322
323
324
325
326
327
Lemma cmra_pcore_validN n x cx : {n} x  pcore x = Some cx  {n} cx.
Proof.
  intros Hvx Hx%cmra_pcore_l. move: Hvx; rewrite -Hx. apply cmra_validN_op_l.
Qed.
Lemma cmra_pcore_valid x cx :  x  pcore x = Some cx   cx.
Proof.
  intros Hv Hx%cmra_pcore_l. move: Hv; rewrite -Hx. apply cmra_valid_op_l.
Qed.
328

329
330
331
332
(** ** Persistent elements *)
Lemma persistent_dup x `{!Persistent x} : x  x  x.
Proof. by apply cmra_pcore_dup' with x. Qed.

333
(** ** Exclusive elements *)
334
Lemma exclusiveN_l n x `{!Exclusive x} y : {n} (x  y)  False.
335
Proof. intros. eapply (exclusive0_l x y), cmra_validN_le; eauto with lia. Qed.
336
337
338
339
340
341
Lemma exclusiveN_r n x `{!Exclusive x} y : {n} (y  x)  False.
Proof. rewrite comm. by apply exclusiveN_l. Qed.
Lemma exclusive_l x `{!Exclusive x} y :  (x  y)  False.
Proof. by move /cmra_valid_validN /(_ 0) /exclusive0_l. Qed.
Lemma exclusive_r x `{!Exclusive x} y :  (y  x)  False.
Proof. rewrite comm. by apply exclusive_l. Qed.
342
Lemma exclusiveN_opM n x `{!Exclusive x} my : {n} (x ? my)  my = None.
343
Proof. destruct my as [y|]. move=> /(exclusiveN_l _ x) []. done. Qed.
344
345
346
347
Lemma exclusive_includedN n x `{!Exclusive x} y : x {n} y  {n} y  False.
Proof. intros [? ->]. by apply exclusiveN_l. Qed.
Lemma exclusive_included x `{!Exclusive x} y : x  y   y  False.
Proof. intros [? ->]. by apply exclusive_l. Qed.
348

349
(** ** Order *)
Robbert Krebbers's avatar
Robbert Krebbers committed
350
351
Lemma cmra_included_includedN n x y : x  y  x {n} y.
Proof. intros [z ->]. by exists z. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
352
Global Instance cmra_includedN_trans n : Transitive (@includedN A _ _ n).
353
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
354
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
355
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
356
Global Instance cmra_included_trans: Transitive (@included A _ _).
357
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
  intros x y z [z1 Hy] [z2 Hz]; exists (z1  z2). by rewrite assoc -Hy -Hz.
359
Qed.
360
361
Lemma cmra_valid_included x y :  y  x  y   x.
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_valid_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
362
Lemma cmra_validN_includedN n x y : {n} y  x {n} y  {n} x.
363
Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
364
Lemma cmra_validN_included n x y : {n} y  x  y  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
365
Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed.
366

Robbert Krebbers's avatar
Robbert Krebbers committed
367
Lemma cmra_includedN_S n x y : x {S n} y  x {n} y.
368
Proof. by intros [z Hz]; exists z; apply dist_S. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
369
Lemma cmra_includedN_le n n' x y : x {n} y  n'  n  x {n'} y.
370
371
372
373
374
375
376
Proof. induction 2; auto using cmra_includedN_S. Qed.

Lemma cmra_includedN_l n x y : x {n} x  y.
Proof. by exists y. Qed.
Lemma cmra_included_l x y : x  x  y.
Proof. by exists y. Qed.
Lemma cmra_includedN_r n x y : y {n} x  y.
377
Proof. rewrite (comm op); apply cmra_includedN_l. Qed.
378
Lemma cmra_included_r x y : y  x  y.
379
Proof. rewrite (comm op); apply cmra_included_l. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
380

381
Lemma cmra_pcore_mono' x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
382
383
384
  x  y  pcore x  Some cx   cy, pcore y = Some cy  cx  cy.
Proof.
  intros ? (cx'&?&Hcx)%equiv_Some_inv_r'.
385
  destruct (cmra_pcore_mono x y cx') as (cy&->&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
386
387
  exists cy; by rewrite Hcx.
Qed.
388
Lemma cmra_pcore_monoN' n x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
389
  x {n} y  pcore x {n} Some cx   cy, pcore y = Some cy  cx {n} cy.
Robbert Krebbers's avatar
Robbert Krebbers committed
390
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
391
  intros [z Hy] (cx'&?&Hcx)%dist_Some_inv_r'.
392
  destruct (cmra_pcore_mono x (x  z) cx')
Robbert Krebbers's avatar
Robbert Krebbers committed
393
394
395
396
397
    as (cy&Hxy&?); auto using cmra_included_l.
  assert (pcore y {n} Some cy) as (cy'&?&Hcy')%dist_Some_inv_r'.
  { by rewrite Hy Hxy. }
  exists cy'; split; first done.
  rewrite Hcx -Hcy'; auto using cmra_included_includedN.
Robbert Krebbers's avatar
Robbert Krebbers committed
398
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
400
Lemma cmra_included_pcore x cx : pcore x = Some cx  cx  x.
Proof. exists x. by rewrite cmra_pcore_l. Qed.
401

402
Lemma cmra_monoN_l n x y z : x {n} y  z  x {n} z  y.
403
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
404
Lemma cmra_mono_l x y z : x  y  z  x  z  y.
405
Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed.
406
407
408
409
Lemma cmra_monoN_r n x y z : x {n} y  x  z {n} y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_monoN_l. Qed.
Lemma cmra_mono_r x y z : x  y  x  z  y  z.
Proof. by intros; rewrite -!(comm _ z); apply cmra_mono_l. Qed.
410
411
412
413
Lemma cmra_monoN n x1 x2 y1 y2 : x1 {n} y1  x2 {n} y2  x1  x2 {n} y1  y2.
Proof. intros; etrans; eauto using cmra_monoN_l, cmra_monoN_r. Qed.
Lemma cmra_mono x1 x2 y1 y2 : x1  y1  x2  y2  x1  x2  y1  y2.
Proof. intros; etrans; eauto using cmra_mono_l, cmra_mono_r. Qed.
414

415
416
417
418
419
420
421
Global Instance cmra_monoN' n :
  Proper (includedN n ==> includedN n ==> includedN n) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_monoN. Qed.
Global Instance cmra_mono' :
  Proper (included ==> included ==> included) (@op A _).
Proof. intros x1 x2 Hx y1 y2 Hy. by apply cmra_mono. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
422
Lemma cmra_included_dist_l n x1 x2 x1' :
423
  x1  x2  x1' {n} x1   x2', x1'  x2'  x2' {n} x2.
Robbert Krebbers's avatar
Robbert Krebbers committed
424
Proof.
425
426
  intros [z Hx2] Hx1; exists (x1'  z); split; auto using cmra_included_l.
  by rewrite Hx1 Hx2.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Qed.
428

Robbert Krebbers's avatar
Robbert Krebbers committed
429
430
431
432
433
434
435
436
437
438
439
440
(** ** Total core *)
Section total_core.
  Context `{CMRATotal A}.

  Lemma cmra_core_l x : core x  x  x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_l.
  Qed.
  Lemma cmra_core_idemp x : core (core x)  core x.
  Proof.
    destruct (cmra_total x) as [cx Hcx]. by rewrite /core /= Hcx cmra_pcore_idemp.
  Qed.
441
  Lemma cmra_core_mono x y : x  y  core x  core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
442
443
  Proof.
    intros; destruct (cmra_total x) as [cx Hcx].
444
    destruct (cmra_pcore_mono x y cx) as (cy&Hcy&?); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
445
446
447
448
449
450
451
452
453
454
455
456
457
    by rewrite /core /= Hcx Hcy.
  Qed.

  Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _).
  Proof.
    intros x y Hxy. destruct (cmra_total x) as [cx Hcx].
    by rewrite /core /= -Hxy Hcx.
  Qed.
  Global Instance cmra_core_proper : Proper (() ==> ()) (@core A _).
  Proof. apply (ne_proper _). Qed.

  Lemma cmra_core_r x : x  core x  x.
  Proof. by rewrite (comm _ x) cmra_core_l. Qed.
458
459
  Lemma cmra_core_dup x : core x  core x  core x.
  Proof. by rewrite -{3}(cmra_core_idemp x) cmra_core_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
  Lemma cmra_core_validN n x : {n} x  {n} core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed.
  Lemma cmra_core_valid x :  x   core x.
  Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed.

  Lemma persistent_total x : Persistent x  core x  x.
  Proof.
    split; [intros; by rewrite /core /= (persistent x)|].
    rewrite /Persistent /core /=.
    destruct (cmra_total x) as [? ->]. by constructor.
  Qed.
  Lemma persistent_core x `{!Persistent x} : core x  x.
  Proof. by apply persistent_total. Qed.

  Global Instance cmra_core_persistent x : Persistent (core x).
  Proof.
    destruct (cmra_total x) as [cx Hcx].
    rewrite /Persistent /core /= Hcx /=. eauto using cmra_pcore_idemp.
  Qed.

  Lemma cmra_included_core x : core x  x.
  Proof. by exists x; rewrite cmra_core_l. Qed.
  Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
  Global Instance cmra_included_preorder : PreOrder (@included A _ _).
  Proof.
    split; [|apply _]. by intros x; exists (core x); rewrite cmra_core_r.
  Qed.
490
  Lemma cmra_core_monoN n x y : x {n} y  core x {n} core y.
Robbert Krebbers's avatar
Robbert Krebbers committed
491
492
  Proof.
    intros [z ->].
493
    apply cmra_included_includedN, cmra_core_mono, cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
494
495
496
  Qed.
End total_core.

Robbert Krebbers's avatar
Robbert Krebbers committed
497
(** ** Timeless *)
498
Lemma cmra_timeless_included_l x y : Timeless x  {0} y  x {0} y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
499
500
Proof.
  intros ?? [x' ?].
501
  destruct (cmra_extend 0 y x x') as (z&z'&Hy&Hz&Hz'); auto; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
502
  by exists z'; rewrite Hy (timeless x z).
Robbert Krebbers's avatar
Robbert Krebbers committed
503
Qed.
504
505
Lemma cmra_timeless_included_r x y : Timeless y  x {0} y  x  y.
Proof. intros ? [x' ?]. exists x'. by apply (timeless y). Qed.
506
Lemma cmra_op_timeless x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
507
   (x1  x2)  Timeless x1  Timeless x2  Timeless (x1  x2).
Robbert Krebbers's avatar
Robbert Krebbers committed
508
509
Proof.
  intros ??? z Hz.
510
  destruct (cmra_extend 0 z x1 x2) as (y1&y2&Hz'&?&?); auto; simpl in *.
511
  { rewrite -?Hz. by apply cmra_valid_validN. }
Robbert Krebbers's avatar
Robbert Krebbers committed
512
  by rewrite Hz' (timeless x1 y1) // (timeless x2 y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
513
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
514

515
516
517
518
519
520
521
522
(** ** Discrete *)
Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x :  x  {n} x.
Proof.
  split; first by rewrite cmra_valid_validN.
  eauto using cmra_discrete_valid, cmra_validN_le with lia.
Qed.
Lemma cmra_discrete_included_iff `{Discrete A} n x y : x  y  x {n} y.
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
523
  split; first by apply cmra_included_includedN.
524
525
  intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
527
End cmra.

528
529
(** * Properties about CMRAs with a unit element **)
Section ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
  Context {A : ucmraT}.
  Implicit Types x y z : A.

  Lemma ucmra_unit_validN n : {n} (:A).
  Proof. apply cmra_valid_validN, ucmra_unit_valid. Qed.
  Lemma ucmra_unit_leastN n x :  {n} x.
  Proof. by exists x; rewrite left_id. Qed.
  Lemma ucmra_unit_least x :   x.
  Proof. by exists x; rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id : RightId ()  (@op A _).
  Proof. by intros x; rewrite (comm op) left_id. Qed.
  Global Instance ucmra_unit_persistent : Persistent (:A).
  Proof. apply ucmra_pcore_unit. Qed.

  Global Instance cmra_unit_total : CMRATotal A.
  Proof.
546
    intros x. destruct (cmra_pcore_mono'  x ) as (cx&->&?);
Robbert Krebbers's avatar
Robbert Krebbers committed
547
548
      eauto using ucmra_unit_least, (persistent ).
  Qed.
549
End ucmra.
Robbert Krebbers's avatar
Robbert Krebbers committed
550
551
Hint Immediate cmra_unit_total.

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

(** * Properties about CMRAs with Leibniz equality *)
Section cmra_leibniz.
  Context {A : cmraT} `{!LeibnizEquiv A}.
  Implicit Types x y : A.

  Global Instance cmra_assoc_L : Assoc (=) (@op A _).
  Proof. intros x y z. unfold_leibniz. by rewrite assoc. Qed.
  Global Instance cmra_comm_L : Comm (=) (@op A _).
  Proof. intros x y. unfold_leibniz. by rewrite comm. Qed.

  Lemma cmra_pcore_l_L x cx : pcore x = Some cx  cx  x = x.
  Proof. unfold_leibniz. apply cmra_pcore_l'. Qed.
  Lemma cmra_pcore_idemp_L x cx : pcore x = Some cx  pcore cx = Some cx.
  Proof. unfold_leibniz. apply cmra_pcore_idemp'. Qed.

  Lemma cmra_opM_assoc_L x y mz : (x  y) ? mz = x  (y ? mz).
  Proof. unfold_leibniz. apply cmra_opM_assoc. Qed.

  (** ** Core *)
  Lemma cmra_pcore_r_L x cx : pcore x = Some cx  x  cx = x.
  Proof. unfold_leibniz. apply cmra_pcore_r'. Qed.
  Lemma cmra_pcore_dup_L x cx : pcore x = Some cx  cx = cx  cx.
  Proof. unfold_leibniz. apply cmra_pcore_dup'. Qed.

  (** ** Persistent elements *)
  Lemma persistent_dup_L x `{!Persistent x} : x  x  x.
  Proof. unfold_leibniz. by apply persistent_dup. Qed.

  (** ** Total core *)
  Section total_core.
    Context `{CMRATotal A}.

    Lemma cmra_core_r_L x : x  core x = x.
    Proof. unfold_leibniz. apply cmra_core_r. Qed.
    Lemma cmra_core_l_L x : core x  x = x.
    Proof. unfold_leibniz. apply cmra_core_l. Qed.
    Lemma cmra_core_idemp_L x : core (core x) = core x.
    Proof. unfold_leibniz. apply cmra_core_idemp. Qed.
    Lemma cmra_core_dup_L x : core x = core x  core x.
    Proof. unfold_leibniz. apply cmra_core_dup. Qed.
    Lemma persistent_total_L x : Persistent x  core x = x.
    Proof. unfold_leibniz. apply persistent_total. Qed.
    Lemma persistent_core_L x `{!Persistent x} : core x = x.
    Proof. by apply persistent_total_L. Qed.
  End total_core.
End cmra_leibniz.

Section ucmra_leibniz.
  Context {A : ucmraT} `{!LeibnizEquiv A}.
  Implicit Types x y z : A.

  Global Instance ucmra_unit_left_id_L : LeftId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite left_id. Qed.
  Global Instance ucmra_unit_right_id_L : RightId (=)  (@op A _).
  Proof. intros x. unfold_leibniz. by rewrite right_id. Qed.
End ucmra_leibniz.

Robbert Krebbers's avatar
Robbert Krebbers committed
610
611
612
613
614
615
616
617
618
619
620
621
622
(** * Constructing a CMRA with total core *)
Section cmra_total.
  Context A `{Dist A, Equiv A, PCore A, Op A, Valid A, ValidN A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_ne :  n (x : A), Proper (dist n ==> dist n) (op x)).
  Context (core_ne :  n, Proper (dist n ==> dist n) (@core A _)).
  Context (validN_ne :  n, Proper (dist n ==> impl) (@validN A _ n)).
  Context (valid_validN :  (x : A),  x   n, {n} x).
  Context (validN_S :  n (x : A), {S n} x  {n} x).
  Context (op_assoc : Assoc () (@op A _)).
  Context (op_comm : Comm () (@op A _)).
  Context (core_l :  x : A, core x  x  x).
  Context (core_idemp :  x : A, core (core x)  core x).
623
  Context (core_mono :  x y : A, x  y  core x  core y).
Robbert Krebbers's avatar
Robbert Krebbers committed
624
625
626
  Context (validN_op_l :  n (x y : A), {n} (x  y)  {n} x).
  Context (extend :  n (x y1 y2 : A),
    {n} x  x {n} y1  y2 
627
     z1 z2, x  z1  z2  z1 {n} y1  z2 {n} y2).
Robbert Krebbers's avatar
Robbert Krebbers committed
628
629
630
631
632
633
634
635
  Lemma cmra_total_mixin : CMRAMixin A.
  Proof.
    split; auto.
    - intros n x y ? Hcx%core_ne Hx; move: Hcx. rewrite /core /= Hx /=.
      case (total y)=> [cy ->]; eauto.
    - intros x cx Hcx. move: (core_l x). by rewrite /core /= Hcx.
    - intros x cx Hcx. move: (core_idemp x). rewrite /core /= Hcx /=.
      case (total cx)=>[ccx ->]; by constructor.
636
    - intros x y cx Hxy%core_mono Hx. move: Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
637
638
639
      rewrite /core /= Hx /=. case (total y)=> [cy ->]; eauto.
  Qed.
End cmra_total.
640

641
(** * Properties about monotone functions *)
642
Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
643
Proof. repeat split; by try apply _. Qed.
644
645
Instance cmra_monotone_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAMonotone f  CMRAMonotone g  CMRAMonotone (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
646
647
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
648
  - apply _. 
649
  - move=> n x Hx /=. by apply cmra_monotone_validN, cmra_monotone_validN.
650
  - move=> x y Hxy /=. by apply cmra_monotone, cmra_monotone.
Robbert Krebbers's avatar
Robbert Krebbers committed
651
Qed.
652

653
654
Section cmra_monotone.
  Context {A B : cmraT} (f : A  B) `{!CMRAMonotone f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
655
  Global Instance cmra_monotone_proper : Proper (() ==> ()) f := ne_proper _.
656
  Lemma cmra_monotoneN n x y : x {n} y  f x {n} f y.
657
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
658
    intros [z ->].
659
    apply cmra_included_includedN, (cmra_monotone f), cmra_included_l.
660
  Qed.
661
662
  Lemma cmra_monotone_valid x :  x   f x.
  Proof. rewrite !cmra_valid_validN; eauto using cmra_monotone_validN. Qed.
663
664
End cmra_monotone.

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
Instance cmra_homomorphism_id {A : cmraT} : CMRAHomomorphism (@id A).
Proof. repeat split; by try apply _. Qed.
Instance cmra_homomorphism_compose {A B C : cmraT} (f : A  B) (g : B  C) :
  CMRAHomomorphism f  CMRAHomomorphism g  CMRAHomomorphism (g  f).
Proof.
  split.
  - apply _. 
  - move=> x y /=. rewrite -(cmra_homomorphism g).
    by apply (ne_proper _), cmra_homomorphism.
Qed.

Instance cmra_homomorphism_proper {A B : cmraT} (f : A  B) :
  CMRAHomomorphism f  Proper (() ==> ()) f := λ _, ne_proper _.

Instance ucmra_homomorphism_id {A : ucmraT} : UCMRAHomomorphism (@id A).
Proof. repeat split; by try apply _. Qed.
Instance ucmra_homomorphism_compose {A B C : ucmraT} (f : A  B) (g : B  C) :
  UCMRAHomomorphism f  UCMRAHomomorphism g  UCMRAHomomorphism (g  f).
Proof. split. apply _. by rewrite /= !ucmra_homomorphism_unit. Qed.

685
686
(** Functors *)
Structure rFunctor := RFunctor {
687
  rFunctor_car : ofeT  ofeT  cmraT;
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
  rFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  rFunctor_car A1 B1 -n> rFunctor_car A2 B2;
  rFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2);
  rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x  x;
  rFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    rFunctor_map (fg, g'f') x  rFunctor_map (g,g') (rFunctor_map (f,f') x);
  rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (rFunctor_map fg) 
}.
Existing Instances rFunctor_ne rFunctor_mono.
Instance: Params (@rFunctor_map) 5.

Class rFunctorContractive (F : rFunctor) :=
  rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2).

705
Definition rFunctor_diag (F: rFunctor) (A: ofeT) : cmraT := rFunctor_car F A A.
706
707
708
709
710
711
712
713
714
Coercion rFunctor_diag : rFunctor >-> Funclass.

Program Definition constRF (B : cmraT) : rFunctor :=
  {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constRF_contractive B : rFunctorContractive (constRF B).
Proof. rewrite /rFunctorContractive; apply _. Qed.

715
Structure urFunctor := URFunctor {
716
  urFunctor_car : ofeT  ofeT  ucmraT;
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
  urFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  urFunctor_car A1 B1 -n> urFunctor_car A2 B2;
  urFunctor_ne A1 A2 B1 B2 n :
    Proper (dist n ==> dist n) (@urFunctor_map A1 A2 B1 B2);
  urFunctor_id {A B} (x : urFunctor_car A B) : urFunctor_map (cid,cid) x  x;
  urFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    urFunctor_map (fg, g'f') x  urFunctor_map (g,g') (urFunctor_map (f,f') x);
  urFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) :
    CMRAMonotone (urFunctor_map fg) 
}.
Existing Instances urFunctor_ne urFunctor_mono.
Instance: Params (@urFunctor_map) 5.

Class urFunctorContractive (F : urFunctor) :=
  urFunctor_contractive A1 A2 B1 B2 :> Contractive (@urFunctor_map F A1 A2 B1 B2).

734
Definition urFunctor_diag (F: urFunctor) (A: ofeT) : ucmraT := urFunctor_car F A A.
735
736
737
738
739
740
741
742
743
Coercion urFunctor_diag : urFunctor >-> Funclass.

Program Definition constURF (B : ucmraT) : urFunctor :=
  {| urFunctor_car A1 A2 := B; urFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.

Instance constURF_contractive B : urFunctorContractive (constURF B).
Proof. rewrite /urFunctorContractive; apply _. Qed.

744
745
746
747
748
749
750
751
752
753
754
755
756
(** * Transporting a CMRA equality *)
Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B :=
  eq_rect A id x _ H.

Section cmra_transport.
  Context {A B : cmraT} (H : A = B).
  Notation T := (cmra_transport H).
  Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T.
  Proof. by intros ???; destruct H. Qed.
  Global Instance cmra_transport_proper : Proper (() ==> ()) T.
  Proof. by intros ???; destruct H. Qed.
  Lemma cmra_transport_op x y : T (x  y) = T x  T y.
  Proof. by destruct H. Qed.
Ralf Jung's avatar
Ralf Jung committed
757
  Lemma cmra_transport_core x : T (core x) = core (T x).
758
  Proof. by destruct H. Qed.
759
  Lemma cmra_transport_validN n x : {n} T x  {n} x.
760
  Proof. by destruct H. Qed.
761
  Lemma cmra_transport_valid x :  T x   x.
762
763
764
  Proof. by destruct H. Qed.
  Global Instance cmra_transport_timeless x : Timeless x  Timeless (T x).
  Proof. by destruct H. Qed.
765
766
  Global Instance cmra_transport_persistent x : Persistent x  Persistent (T x).
  Proof. by destruct H. Qed.
767
768
End cmra_transport.

769
770
(** * Instances *)
(** ** Discrete CMRA *)
Robbert Krebbers's avatar
Robbert Krebbers committed
771
Record RAMixin A `{Equiv A, PCore A, Op A, Valid A} := {
772
  (* setoids *)
Robbert Krebbers's avatar
Robbert Krebbers committed
773
774
775
776
  ra_op_proper (x : A) : Proper (() ==> ()) (op x);
  ra_core_proper x y cx :
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
  ra_validN_proper : Proper (() ==> impl) valid;
777
  (* monoid *)
778
779
  ra_assoc : Assoc () ();
  ra_comm : Comm () ();
Robbert Krebbers's avatar
Robbert Krebbers committed
780
781
  ra_pcore_l x cx : pcore x = Some cx  cx  x  x;
  ra_pcore_idemp x cx : pcore x = Some cx  pcore cx  Some cx;
782
  ra_pcore_mono x y cx :
Robbert Krebbers's avatar
Robbert Krebbers committed
783
    x  y  pcore x = Some cx   cy, pcore y = Some cy  cx  cy;
Robbert Krebbers's avatar
Robbert Krebbers committed
784
  ra_valid_op_l x y :  (x  y)   x
785
786
}.

787
Section discrete.
Robbert Krebbers's avatar
Robbert Krebbers committed
788
  Context `{Equiv A, PCore A, Op A, Valid A, @Equivalence A ()}.
789
  Context (ra_mix : RAMixin A).
790
  Existing Instances discrete_dist.
791

792
  Instance discrete_validN : ValidN A := λ n x,  x.
793
  Definition discrete_cmra_mixin : CMRAMixin A.
794
  Proof.
795
    destruct ra_mix; split; try done.
796
    - intros x; split; first done. by move=> /(_ 0).
797
    - intros n x y1 y2 ??; by exists y1, y2.
798
799
800
  Qed.
End discrete.

801
Notation discreteR A ra_mix :=
802
  (CMRAT A discrete_ofe_mixin (discrete_cmra_mixin ra_mix)).
803
Notation discreteUR A ra_mix ucmra_mix :=
804
  (UCMRAT A discrete_ofe_mixin (discrete_cmra_mixin ra_mix) ucmra_mix).
805

Robbert Krebbers's avatar
Robbert Krebbers committed
806
Global Instance discrete_cmra_discrete `{Equiv A, PCore A, Op A, Valid A,
807
808
809
  @Equivalence A ()} (ra_mix : RAMixin A) : CMRADiscrete (discreteR A ra_mix).
Proof. split. apply _. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
810
811
812
813
814
815
816
817
818
819
Section ra_total.
  Context A `{Equiv A, PCore A, Op A, Valid A}.
  Context (total :  x, is_Some (pcore x)).
  Context (op_proper :  (x : A