fin_maps.v 14.8 KB
Newer Older
1
2
From algebra Require Export cmra option.
From prelude Require Export gmap.
3
From algebra Require Import functor upred.
4

5
6
Section cofe.
Context `{Countable K} {A : cofeT}.
7
Implicit Types m : gmap K A.
8

9
Instance map_dist : Dist (gmap K A) := λ n m1 m2,
10
   i, m1 !! i {n} m2 !! i.
11
Program Definition map_chain (c : chain (gmap K A))
12
  (k : K) : chain (option A) := {| chain_car n := c n !! k |}.
13
14
Next Obligation. by intros c k n i ?; apply (chain_cauchy c). Qed.
Instance map_compl : Compl (gmap K A) := λ c,
15
  map_imap (λ i _, compl (map_chain c i)) (c 1).
16
Definition map_cofe_mixin : CofeMixin (gmap K A).
17
18
19
20
21
22
23
24
25
26
Proof.
  split.
  * intros m1 m2; split.
    + by intros Hm n k; apply equiv_dist.
    + intros Hm k; apply equiv_dist; intros n; apply Hm.
  * intros n; split.
    + by intros m k.
    + by intros m1 m2 ? k.
    + by intros m1 m2 m3 ?? k; transitivity (m2 !! k).
  * by intros n m1 m2 ? k; apply dist_S.
27
28
29
  * intros c n k; rewrite /compl /map_compl lookup_imap.
    feed inversion (λ H, chain_cauchy c 0 (S n) H k); simpl; auto with lia.
    by rewrite conv_compl /=; apply reflexive_eq.
30
Qed.
31
32
Canonical Structure mapC : cofeT := CofeT map_cofe_mixin.

33
34
35
36
(* why doesn't this go automatic? *)
Global Instance mapC_leibniz: LeibnizEquiv A  LeibnizEquiv mapC.
Proof. intros; change (LeibnizEquiv (gmap K A)); apply _. Qed.

37
Global Instance lookup_ne n k :
38
  Proper (dist n ==> dist n) (lookup k : gmap K A  option A).
39
Proof. by intros m1 m2. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
40
41
Global Instance lookup_proper k :
  Proper (() ==> ()) (lookup k : gmap K A  option A) := _.
42
43
44
45
46
47
Global Instance alter_ne f k n :
  Proper (dist n ==> dist n) f  Proper (dist n ==> dist n) (alter f k).
Proof.
  intros ? m m' Hm k'.
  by destruct (decide (k = k')); simplify_map_equality; rewrite (Hm k').
Qed.
48
Global Instance insert_ne i n :
49
  Proper (dist n ==> dist n ==> dist n) (insert (M:=gmap K A) i).
50
51
52
53
Proof.
  intros x y ? m m' ? j; destruct (decide (i = j)); simplify_map_equality;
    [by constructor|by apply lookup_ne].
Qed.
54
Global Instance singleton_ne i n :
55
56
  Proper (dist n ==> dist n) (singletonM i : A  gmap K A).
Proof. by intros ???; apply insert_ne. Qed.
57
Global Instance delete_ne i n :
58
  Proper (dist n ==> dist n) (delete (M:=gmap K A) i).
59
60
61
62
Proof.
  intros m m' ? j; destruct (decide (i = j)); simplify_map_equality;
    [by constructor|by apply lookup_ne].
Qed.
63

64
65
Global Instance map_timeless `{ a : A, Timeless a} (m : gmap K A) : Timeless m.
Proof. by intros m' ? i; apply (timeless _). Qed.
66

67
Instance map_empty_timeless : Timeless ( : gmap K A).
68
69
70
71
Proof.
  intros m Hm i; specialize (Hm i); rewrite lookup_empty in Hm |- *.
  inversion_clear Hm; constructor.
Qed.
72
Global Instance map_lookup_timeless m i : Timeless m  Timeless (m !! i).
73
74
Proof.
  intros ? [x|] Hx; [|by symmetry; apply (timeless _)].
75
  assert (m {0} <[i:=x]> m)
Robbert Krebbers's avatar
Robbert Krebbers committed
76
77
    by (by symmetry in Hx; inversion Hx; cofe_subst; rewrite insert_id).
  by rewrite (timeless m (<[i:=x]>m)) // lookup_insert.
78
Qed.
79
Global Instance map_insert_timeless m i x :
80
81
82
  Timeless x  Timeless m  Timeless (<[i:=x]>m).
Proof.
  intros ?? m' Hm j; destruct (decide (i = j)); simplify_map_equality.
Robbert Krebbers's avatar
Robbert Krebbers committed
83
84
  { by apply (timeless _); rewrite -Hm lookup_insert. }
  by apply (timeless _); rewrite -Hm lookup_insert_ne.
85
Qed.
86
Global Instance map_singleton_timeless i x :
87
  Timeless x  Timeless ({[ i  x ]} : gmap K A) := _.
88
End cofe.
89

90
Arguments mapC _ {_ _} _.
91
92

(* CMRA *)
93
94
Section cmra.
Context `{Countable K} {A : cmraT}.
95
Implicit Types m : gmap K A.
96
97
98

Instance map_op : Op (gmap K A) := merge op.
Instance map_unit : Unit (gmap K A) := fmap unit.
99
Instance map_validN : ValidN (gmap K A) := λ n m,  i, {n} (m !! i).
100
Instance map_minus : Minus (gmap K A) := merge minus.
101

102
Lemma lookup_op m1 m2 i : (m1  m2) !! i = m1 !! i  m2 !! i.
103
Proof. by apply lookup_merge. Qed.
104
Lemma lookup_minus m1 m2 i : (m1  m2) !! i = m1 !! i  m2 !! i.
105
Proof. by apply lookup_merge. Qed.
106
Lemma lookup_unit m i : unit m !! i = unit (m !! i).
107
Proof. by apply lookup_fmap. Qed.
108

109
Lemma map_included_spec (m1 m2 : gmap K A) : m1  m2   i, m1 !! i  m2 !! i.
110
111
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
112
  * by intros [m Hm]; intros i; exists (m !! i); rewrite -lookup_op Hm.
113
  * intros Hm; exists (m2  m1); intros i.
114
    by rewrite lookup_op lookup_minus cmra_op_minus'.
115
Qed.
116
Lemma map_includedN_spec (m1 m2 : gmap K A) n :
117
118
119
  m1 {n} m2   i, m1 !! i {n} m2 !! i.
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
120
  * by intros [m Hm]; intros i; exists (m !! i); rewrite -lookup_op Hm.
121
  * intros Hm; exists (m2  m1); intros i.
Robbert Krebbers's avatar
Robbert Krebbers committed
122
    by rewrite lookup_op lookup_minus cmra_op_minus.
123
Qed.
124

125
Definition map_cmra_mixin : CMRAMixin (gmap K A).
126
127
Proof.
  split.
Robbert Krebbers's avatar
Robbert Krebbers committed
128
129
130
131
  * by intros n m1 m2 m3 Hm i; rewrite !lookup_op (Hm i).
  * by intros n m1 m2 Hm i; rewrite !lookup_unit (Hm i).
  * by intros n m1 m2 Hm ? i; rewrite -(Hm i).
  * by intros n m1 m1' Hm1 m2 m2' Hm2 i; rewrite !lookup_minus (Hm1 i) (Hm2 i).
132
  * intros n m Hm i; apply cmra_validN_S, Hm.
133
134
  * by intros m1 m2 m3 i; rewrite !lookup_op assoc.
  * by intros m1 m2 i; rewrite !lookup_op comm.
135
  * by intros m i; rewrite lookup_op !lookup_unit cmra_unit_l.
136
  * by intros m i; rewrite !lookup_unit cmra_unit_idemp.
137
  * intros n x y; rewrite !map_includedN_spec; intros Hm i.
138
139
    by rewrite !lookup_unit; apply cmra_unit_preservingN.
  * intros n m1 m2 Hm i; apply cmra_validN_op_l with (m2 !! i).
Robbert Krebbers's avatar
Robbert Krebbers committed
140
    by rewrite -lookup_op.
141
  * intros x y n; rewrite map_includedN_spec=> ? i.
Robbert Krebbers's avatar
Robbert Krebbers committed
142
    by rewrite lookup_op lookup_minus cmra_op_minus.
143
Qed.
144
Definition map_cmra_extend_mixin : CMRAExtendMixin (gmap K A).
145
146
Proof.
  intros n m m1 m2 Hm Hm12.
147
  assert ( i, m !! i {n} m1 !! i  m2 !! i) as Hm12'
Robbert Krebbers's avatar
Robbert Krebbers committed
148
    by (by intros i; rewrite -lookup_op).
149
150
151
  set (f i := cmra_extend_op n (m !! i) (m1 !! i) (m2 !! i) (Hm i) (Hm12' i)).
  set (f_proj i := proj1_sig (f i)).
  exists (map_imap (λ i _, (f_proj i).1) m, map_imap (λ i _, (f_proj i).2) m);
Robbert Krebbers's avatar
Robbert Krebbers committed
152
    repeat split; intros i; rewrite /= ?lookup_op !lookup_imap.
153
  * destruct (m !! i) as [x|] eqn:Hx; rewrite !Hx /=; [|constructor].
Robbert Krebbers's avatar
Robbert Krebbers committed
154
    rewrite -Hx; apply (proj2_sig (f i)).
155
  * destruct (m !! i) as [x|] eqn:Hx; rewrite /=; [apply (proj2_sig (f i))|].
156
    pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
157
    by symmetry; apply option_op_positive_dist_l with (m2 !! i).
158
159
  * destruct (m !! i) as [x|] eqn:Hx; simpl; [apply (proj2_sig (f i))|].
    pose proof (Hm12' i) as Hm12''; rewrite Hx in Hm12''.
160
    by symmetry; apply option_op_positive_dist_r with (m1 !! i).
161
Qed.
162
163
Canonical Structure mapRA : cmraT :=
  CMRAT map_cofe_mixin map_cmra_mixin map_cmra_extend_mixin.
164
165
166
167
168
169
170
Global Instance map_cmra_identity : CMRAIdentity mapRA.
Proof.
  split.
  * by intros ? n; rewrite lookup_empty.
  * by intros m i; rewrite /= lookup_op lookup_empty (left_id_L None _).
  * apply map_empty_timeless.
Qed.
171
172
Global Instance mapRA_leibniz : LeibnizEquiv A  LeibnizEquiv mapRA.
Proof. intros; change (LeibnizEquiv (gmap K A)); apply _. Qed.
173
174
175
176
177
178

(** Internalized properties *)
Lemma map_equivI {M} m1 m2 : (m1  m2)%I  ( i, m1 !! i  m2 !! i : uPred M)%I.
Proof. done. Qed.
Lemma map_validI {M} m : ( m)%I  ( i,  (m !! i) : uPred M)%I.
Proof. done. Qed.
179
End cmra.
180

181
182
183
Arguments mapRA _ {_ _} _.

Section properties.
184
Context `{Countable K} {A : cmraT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
185
Implicit Types m : gmap K A.
186
187
Implicit Types i : K.
Implicit Types a : A.
188

189
Lemma map_lookup_validN n m i x : {n} m  m !! i {n} Some x  {n} x.
Robbert Krebbers's avatar
Robbert Krebbers committed
190
Proof. by move=> /(_ i) Hm Hi; move:Hm; rewrite Hi. Qed.
191
Lemma map_insert_validN n m i x : {n} x  {n} m  {n} <[i:=x]>m.
192
Proof. by intros ?? j; destruct (decide (i = j)); simplify_map_equality. Qed.
193
194
195
196
197
Lemma map_singleton_validN n i x : {n} ({[ i  x ]} : gmap K A)  {n} x.
Proof.
  split; [|by intros; apply map_insert_validN, cmra_empty_valid].
  by move=>/(_ i); simplify_map_equality.
Qed.
198

199
200
201
202
203
204
205
Lemma map_lookup_valid m i x :  m  m !! i  Some x   x.
Proof. move=>Hm Hi n. move:(Hm n i). by rewrite Hi. Qed.
Lemma map_insert_valid m i x :  x   m   <[i:=x]>m.
Proof. intros ?? n j; apply map_insert_validN; auto. Qed.
Lemma map_singleton_valid i x :  ({[ i  x ]} : gmap K A)   x.
Proof. split; intros ? n; eapply map_singleton_validN; eauto. Qed.

206
Lemma map_insert_op_None m1 m2 i x :
207
  m2 !! i = None  <[i:=x]>(m1  m2) = <[i:=x]>m1  m2.
208
Proof. by intros Hi; apply (insert_merge_l _ m1 m2); rewrite Hi. Qed.
209
210
211
212
213
214
215
216
217
218
219
220
221
222
Lemma map_insert_op_unit m1 m2 i x :
  m2 !! i  Some (unit x)  <[i:=x]>(m1  m2)  <[i:=x]>m1  m2.
Proof.
  intros Hu j; destruct (decide (i = j)) as [->|].
  * by rewrite lookup_insert lookup_op lookup_insert Hu cmra_unit_r.
  * by rewrite lookup_insert_ne // !lookup_op lookup_insert_ne.
Qed.
Lemma map_insert_op m1 m2 i x :
  m2 !! i = None  m2 !! i  Some (unit x) 
  <[i:=x]>(m1  m2)  <[i:=x]>m1  m2.
Proof.
  by intros [?|?]; [rewrite map_insert_op_None|rewrite map_insert_op_unit].
Qed.

223
224
225
226
227
228
Lemma map_unit_singleton (i : K) (x : A) :
  unit ({[ i  x ]} : gmap K A) = {[ i  unit x ]}.
Proof. apply map_fmap_singleton. Qed.
Lemma map_op_singleton (i : K) (x y : A) :
  {[ i  x ]}  {[ i  y ]} = ({[ i  x  y ]} : gmap K A).
Proof. by apply (merge_singleton _ _ _ x y). Qed.
229

Robbert Krebbers's avatar
Robbert Krebbers committed
230
Lemma singleton_includedN n m i x :
231
  {[ i  x ]} {n} m   y, m !! i {n} Some y  x  y.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
233
234
235
236
  (* not m !! i = Some y ∧ x ≼{n} y to deal with n = 0 *)
Proof.
  split.
  * move=> [m' /(_ i)]; rewrite lookup_op lookup_singleton=> Hm.
    destruct (m' !! i) as [y|];
237
      [exists (x  y)|exists x]; eauto using cmra_included_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
238
239
240
241
242
  * intros (y&Hi&?); rewrite map_includedN_spec=>j.
    destruct (decide (i = j)); simplify_map_equality.
    + by rewrite Hi; apply Some_Some_includedN, cmra_included_includedN.
    + apply None_includedN.
Qed.
243
Lemma map_dom_op m1 m2 : dom (gset K) (m1  m2)  dom _ m1  dom _ m2.
244
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
245
  apply elem_of_equiv; intros i; rewrite elem_of_union !elem_of_dom.
246
247
248
  unfold is_Some; setoid_rewrite lookup_op.
  destruct (m1 !! i), (m2 !! i); naive_solver.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
249

250
Lemma map_insert_updateP (P : A  Prop) (Q : gmap K A  Prop) m i x :
251
  x ~~>: P  ( y, P y  Q (<[i:=y]>m))  <[i:=x]>m ~~>: Q.
252
253
254
255
256
257
258
259
Proof.
  intros Hx%option_updateP' HP mf n Hm.
  destruct (Hx (mf !! i) n) as ([y|]&?&?); try done.
  { by generalize (Hm i); rewrite lookup_op; simplify_map_equality. }
  exists (<[i:=y]> m); split; first by auto.
  intros j; move: (Hm j)=>{Hm}; rewrite !lookup_op=>Hm.
  destruct (decide (i = j)); simplify_map_equality'; auto.
Qed.
260
Lemma map_insert_updateP' (P : A  Prop) m i x :
261
  x ~~>: P  <[i:=x]>m ~~>: λ m',  y, m' = <[i:=y]>m  P y.
262
Proof. eauto using map_insert_updateP. Qed.
263
Lemma map_insert_update m i x y : x ~~> y  <[i:=x]>m ~~> <[i:=y]>m.
264
Proof.
265
  rewrite !cmra_update_updateP; eauto using map_insert_updateP with subst.
266
267
Qed.

268
269
270
271
Lemma map_singleton_updateP (P : A  Prop) (Q : gmap K A  Prop) i x :
  x ~~>: P  ( y, P y  Q {[ i  y ]})  {[ i  x ]} ~~>: Q.
Proof. apply map_insert_updateP. Qed.
Lemma map_singleton_updateP' (P : A  Prop) i x :
272
  x ~~>: P  {[ i  x ]} ~~>: λ m,  y, m = {[ i  y ]}  P y.
273
Proof. apply map_insert_updateP'. Qed.
274
Lemma map_singleton_update i (x y : A) : x ~~> y  {[ i  x ]} ~~> {[ i  y ]}.
275
Proof. apply map_insert_update. Qed.
276

277
Lemma map_singleton_updateP_empty `{Empty A, !CMRAIdentity A}
Robbert Krebbers's avatar
Robbert Krebbers committed
278
    (P : A  Prop) (Q : gmap K A  Prop) i :
279
   ~~>: P  ( y, P y  Q {[ i  y ]})   ~~>: Q.
Robbert Krebbers's avatar
Robbert Krebbers committed
280
281
282
283
284
285
286
287
288
289
290
Proof.
  intros Hx HQ gf n Hg.
  destruct (Hx (from_option  (gf !! i)) n) as (y&?&Hy).
  { move:(Hg i). rewrite !left_id.
    case _: (gf !! i); simpl; auto using cmra_empty_valid. }
  exists {[ i  y ]}; split; first by auto.
  intros i'; destruct (decide (i' = i)) as [->|].
  - rewrite lookup_op lookup_singleton.
    move:Hy; case _: (gf !! i); first done.
    by rewrite right_id.
  - move:(Hg i'). by rewrite !lookup_op lookup_singleton_ne // !left_id.
291
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
292
Lemma map_singleton_updateP_empty' `{Empty A, !CMRAIdentity A} (P: A  Prop) i :
293
294
295
   ~~>: P   ~~>: λ m,  y, m = {[ i  y ]}  P y.
Proof. eauto using map_singleton_updateP_empty. Qed.

296
Section freshness.
Robbert Krebbers's avatar
Robbert Krebbers committed
297
Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
298
Lemma map_updateP_alloc (Q : gmap K A  Prop) m x :
299
   x  ( i, m !! i = None  Q (<[i:=x]>m))  m ~~>: Q.
300
Proof.
301
  intros ? HQ mf n Hm. set (i := fresh (dom (gset K) (m  mf))).
302
  assert (i  dom (gset K) m  i  dom (gset K) mf) as [??].
Robbert Krebbers's avatar
Robbert Krebbers committed
303
  { rewrite -not_elem_of_union -map_dom_op; apply is_fresh. }
304
  exists (<[i:=x]>m); split; first by apply HQ, not_elem_of_dom.
305
  rewrite -map_insert_op_None; last by apply not_elem_of_dom.
306
  by apply map_insert_validN; [apply cmra_valid_validN|].
307
Qed.
308
Lemma map_updateP_alloc' m x :
309
   x  m ~~>: λ m',  i, m' = <[i:=x]>m  m !! i = None.
310
Proof. eauto using map_updateP_alloc. Qed.
311
312
End freshness.

313
314
315
316
317
318
(* Allocation is a local update: Just use composition with a singleton map. *)
(* Deallocation is *not* a local update. The trouble is that if we
   own {[ i ↦ x ]}, then the frame could always own "unit x", and prevent
   deallocation. *)

(* Applying a local update at a position we own is a local update. *)
319
320
Global Instance map_alter_update `{!LocalUpdate Lv L} i :
  LocalUpdate (λ m,  x, m !! i = Some x  Lv x) (alter L i).
321
Proof.
322
323
324
325
  split; first apply _.
  intros n m1 m2 (x&Hix&?) Hm j; destruct (decide (i = j)) as [->|].
  - rewrite lookup_alter !lookup_op lookup_alter Hix /=.
    move: (Hm j); rewrite lookup_op Hix.
326
    case: (m2 !! j)=>[y|] //=; constructor. by apply (local_updateN L).
327
  - by rewrite lookup_op !lookup_alter_ne // lookup_op.
328
Qed.
329
330
End properties.

331
(** Functor *)
332
333
334
335
336
337
338
339
340
341
342
Instance map_fmap_ne `{Countable K} {A B : cofeT} (f : A  B) n :
  Proper (dist n ==> dist n) f  Proper (dist n ==>dist n) (fmap (M:=gmap K) f).
Proof. by intros ? m m' Hm k; rewrite !lookup_fmap; apply option_fmap_ne. Qed.
Instance map_fmap_cmra_monotone `{Countable K} {A B : cmraT} (f : A  B)
  `{!CMRAMonotone f} : CMRAMonotone (fmap f : gmap K A  gmap K B).
Proof.
  split.
  * intros m1 m2 n; rewrite !map_includedN_spec; intros Hm i.
    by rewrite !lookup_fmap; apply: includedN_preserving.
  * by intros n m ? i; rewrite lookup_fmap; apply validN_preserving.
Qed.
343
344
345
346
347
348
349
350
Definition mapC_map `{Countable K} {A B} (f: A -n> B) : mapC K A -n> mapC K B :=
  CofeMor (fmap f : mapC K A  mapC K B).
Instance mapC_map_ne `{Countable K} {A B} n :
  Proper (dist n ==> dist n) (@mapC_map K _ _ A B).
Proof.
  intros f g Hf m k; rewrite /= !lookup_fmap.
  destruct (_ !! k) eqn:?; simpl; constructor; apply Hf.
Qed.
Ralf Jung's avatar
Ralf Jung committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

Program Definition mapF K `{Countable K} (Σ : iFunctor) : iFunctor := {|
  ifunctor_car := mapRA K  Σ; ifunctor_map A B := mapC_map  ifunctor_map Σ
|}.
Next Obligation.
  by intros K ?? Σ A B n f g Hfg; apply mapC_map_ne, ifunctor_map_ne.
Qed.
Next Obligation.
  intros K ?? Σ A x. rewrite /= -{2}(map_fmap_id x).
  apply map_fmap_setoid_ext=> ? y _; apply ifunctor_map_id.
Qed.
Next Obligation.
  intros K ?? Σ A B C f g x. rewrite /= -map_fmap_compose.
  apply map_fmap_setoid_ext=> ? y _; apply ifunctor_map_compose.
Qed.