ofe.v 41.6 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21 22

Tactic Notation "cofe_subst" ident(x) :=
  repeat match goal with
23
  | _ => progress simplify_eq/=
24 25 26 27
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
Tactic Notation "cofe_subst" :=
28
  repeat match goal with
29
  | _ => progress simplify_eq/=
30 31
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
32
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
33

34
Record OfeMixin A `{Equiv A, Dist A} := {
35
  mixin_equiv_dist x y : x  y   n, x {n} y;
36
  mixin_dist_equivalence n : Equivalence (dist n);
37
  mixin_dist_S n x y : x {S n} y  x {n} y
Robbert Krebbers's avatar
Robbert Krebbers committed
38 39 40
}.

(** Bundeled version *)
41 42 43 44 45
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
46
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
47
}.
48 49 50 51 52 53 54 55 56
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
57 58

(** Lifting properties from the mixin *)
59 60
Section ofe_mixin.
  Context {A : ofeT}.
61
  Implicit Types x y : A.
62
  Lemma equiv_dist x y : x  y   n, x {n} y.
63
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
64
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
65
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
66
  Lemma dist_S n x y : x {S n} y  x {n} y.
67 68
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
69

Robbert Krebbers's avatar
Robbert Krebbers committed
70 71
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

72
(** Discrete OFEs and Timeless elements *)
Ralf Jung's avatar
Ralf Jung committed
73
(* TODO: On paper, We called these "discrete elements". I think that makes
Ralf Jung's avatar
Ralf Jung committed
74
   more sense. *)
75 76 77 78
Class Timeless {A : ofeT} (x : A) := timeless y : x {0} y  x  y.
Arguments timeless {_} _ {_} _ _.
Hint Mode Timeless + ! : typeclass_instances.

79 80 81 82 83 84 85 86 87 88
Class Discrete (A : ofeT) := discrete_timeless (x : A) :> Timeless x.

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

89 90 91 92 93
Program Definition chain_map {A B : ofeT} (f : A  B)
    `{! n, Proper (dist n ==> dist n) f} (c : chain A) : chain B :=
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

94 95 96 97 98 99
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
100

101 102 103 104 105
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c
      `( n : nat, Proper (dist n ==> dist n) f) :
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
106 107
(** General properties *)
Section cofe.
108
  Context {A : ofeT}.
109
  Implicit Types x y : A.
Robbert Krebbers's avatar
Robbert Krebbers committed
110 111 112
  Global Instance cofe_equivalence : Equivalence (() : relation A).
  Proof.
    split.
113 114
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
115
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
116
  Qed.
117
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
118 119
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
120 121
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
122
  Qed.
123
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
124
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
125
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
126 127 128
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
129
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
130
  Proof. induction 2; eauto using dist_S. Qed.
131 132
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
133
  Instance ne_proper {B : ofeT} (f : A  B)
Robbert Krebbers's avatar
Robbert Krebbers committed
134 135
    `{! n, Proper (dist n ==> dist n) f} : Proper (() ==> ()) f | 100.
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
136
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C)
Robbert Krebbers's avatar
Robbert Krebbers committed
137 138 139 140
    `{! n, Proper (dist n ==> dist n ==> dist n) f} :
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
142
  Qed.
143

144
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
145 146 147 148
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
149 150
  Lemma timeless_iff n (x : A) `{!Timeless x} y : x  y  x {n} y.
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
    split; intros; auto. apply (timeless _), dist_le with n; auto with lia.
152
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
153 154
End cofe.

155
(** Contractive functions *)
156 157 158 159 160 161 162 163
Definition dist_later {A : ofeT} (n : nat) (x y : A) : Prop :=
  match n with 0 => True | S n => x {n} y end.
Arguments dist_later _ !_ _ _ /.

Global Instance dist_later_equivalence A n : Equivalence (@dist_later A n).
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
164

165
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
166 167
Proof. by intros n y1 y2. Qed.

168
Section contractive.
169
  Local Set Default Proof Using "Type*".
170 171 172 173
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
174
  Proof. by apply (_ : Contractive f). Qed.
175
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
176
  Proof. intros. by apply (_ : Contractive f). Qed.
177 178 179 180 181 182 183

  Global Instance contractive_ne n : Proper (dist n ==> dist n) f | 100.
  Proof. by intros x y ?; apply dist_S, contractive_S. Qed.
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

184 185 186 187 188 189 190
Ltac f_contractive :=
  match goal with
  | |- ?f _ {_} ?f _ => apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => apply (_ : Proper (_ ==> dist_later _ ==> _) f)
  end;
  try match goal with
191 192
  | |- @dist_later ?A ?n ?x ?y =>
         destruct n as [|n]; [done|change (@dist A _ n x y)]
193 194 195 196 197 198
  end;
  try reflexivity.

Ltac solve_contractive :=
  preprocess_solve_proper;
  solve [repeat (first [f_contractive|f_equiv]; try eassumption)].
Robbert Krebbers's avatar
Robbert Krebbers committed
199

Robbert Krebbers's avatar
Robbert Krebbers committed
200
(** Fixpoint *)
201
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
202
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
203
Next Obligation.
204
  intros A ? f ? n.
205
  induction n as [|n IH]=> -[|i] //= ?; try omega.
206 207
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
208
Qed.
209

210
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
211
  `{!Contractive f} : A := compl (fixpoint_chain f).
212 213 214
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
215 216

Section fixpoint.
217
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
218

219
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
220
  Proof.
221 222
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
223
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
224
  Qed.
225 226 227

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
228 229 230
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
231 232
  Qed.

233
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
234
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
  Proof.
236
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
237
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
238 239
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
240
  Qed.
241 242
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
243
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
244 245

  Lemma fixpoint_ind (P : A  Prop) :
246
    Proper (() ==> impl) P 
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    ( x, P x)  ( x, P x  P (f x)) 
    ( (c : chain A), ( n, P (c n))  P (compl c)) 
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
    { intros n. induction n as [|n IH]=> -[|i] //= ?; try omega.
      - apply (contractive_0 f).
      - apply (contractive_S f), IH; auto with omega. }
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
    rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr.
    apply equiv_dist=>n.
    rewrite /fp2 (conv_compl n) /= /chcar.
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
262 263
End fixpoint.

264 265 266
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
267

268
Section fixpointK.
269
  Local Set Default Proof Using "Type*".
270
  Context `{Cofe A, Inhabited A} (f : A  A) k `{!Contractive (Nat.iter k f)}.
271 272 273
  (* TODO: Can we get rid of this assumption, derive it from contractivity? *)
  Context `{! n, Proper (dist n ==> dist n) f}.

274
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
275 276
  Proof.
    apply equiv_dist=>n.
277
    rewrite /fixpointK fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain _)) //.
278
    induction n as [|n IH]; simpl.
279 280
    - rewrite -Nat_iter_S Nat_iter_S_r. eapply contractive_0; first done.
    - rewrite -[f _]Nat_iter_S Nat_iter_S_r. eapply contractive_S; first done. eauto.
281 282
  Qed.

283
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
284
  Proof.
285 286 287 288
    intros Hf. apply fixpoint_unique, equiv_dist=>n.
    (* Forward reasoning is so annoying... *)
    assert (x {n} f x) by by apply equiv_dist.
    clear Contractive0. induction k; first done. by rewrite {1}Hf {1}IHn0.
289 290
  Qed.

291 292
  Section fixpointK_ne.
    Context (g : A  A) `{!Contractive (Nat.iter k g), ! n, Proper (dist n ==> dist n) g}.
293

294
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
295
    Proof.
296 297
      rewrite /fixpointK=>Hne /=. apply fixpoint_ne=>? /=. clear Contractive0 Contractive1.
      induction k; first by auto. simpl. rewrite IHn0. apply Hne.
298 299
    Qed.

300 301 302 303
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
End fixpointK.
304

Robbert Krebbers's avatar
Robbert Krebbers committed
305
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
306
Section fixpointAB.
307 308
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
350
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
351

Ralf Jung's avatar
Ralf Jung committed
352
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
384
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
385

386
(** Function space *)
387
(* We make [ofe_fun] a definition so that we can register it as a canonical
388
structure. *)
389
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
390

391 392 393 394 395
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
396 397 398 399 400 401 402 403 404 405
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
406
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
407

408 409 410 411 412 413 414 415 416
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
417
Notation "A -c> B" :=
418 419
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
420 421
  Inhabited (A -c> B) := populate (λ _, inhabitant).

422
(** Non-expansive function space *)
423 424 425
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
  ofe_mor_ne n : Proper (dist n ==> dist n) ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
426 427
}.
Arguments CofeMor {_ _} _ {_}.
428 429
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
430

431 432 433 434
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

435 436 437 438 439 440 441
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
442 443
  Proof.
    split.
444
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
445
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
446
    - intros n; split.
447 448
      + by intros f x.
      + by intros f g ? x.
449
      + by intros f g h ?? x; trans (g x).
450
    - by intros n f g ? x; apply dist_S.
451
  Qed.
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
  Global Program Instance ofe_more_cofe `{Cofe B} : Cofe ofe_morC :=
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
469

470 471
  Global Instance ofe_mor_car_ne n :
    Proper (dist n ==> dist n ==> dist n) (@ofe_mor_car A B).
472
  Proof. intros f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
473 474 475
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
476
  Proof. done. Qed.
477
End ofe_mor.
478

479
Arguments ofe_morC : clear implicits.
480
Notation "A -n> B" :=
481 482
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
483
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
484

485
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
486 487
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
488
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
489
Instance: Params (@cconst) 2.
490

Robbert Krebbers's avatar
Robbert Krebbers committed
491 492 493 494 495
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
496
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
497
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
498

Ralf Jung's avatar
Ralf Jung committed
499
(* Function space maps *)
500
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
501
  (h : A -n> B) : A' -n> B' := g  h  f.
502 503
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
504
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
505

506 507 508 509
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
Instance ofe_morC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
510
Proof.
511
  intros f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
512
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
513 514
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
515
(** unit *)
516 517
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
518
  Definition unit_ofe_mixin : OfeMixin unit.
519
  Proof. by repeat split; try exists 0. Qed.
520
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
521

522 523
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
524 525

  Global Instance unit_discrete_cofe : Discrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
  Proof. done. Qed.
527
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
528 529

(** Product *)
530
Section product.
531
  Context {A B : ofeT}.
532 533 534 535 536 537

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
    Proper (dist n ==> dist n ==> dist n) (@pair A B) := _.
  Global Instance fst_ne : Proper (dist n ==> dist n) (@fst A B) := _.
  Global Instance snd_ne : Proper (dist n ==> dist n) (@snd A B) := _.
538
  Definition prod_ofe_mixin : OfeMixin (A * B).
539 540
  Proof.
    split.
541
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
542
      rewrite !equiv_dist; naive_solver.
543 544
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
545
  Qed.
546 547 548 549 550 551 552 553 554
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

555 556 557
  Global Instance prod_timeless (x : A * B) :
    Timeless (x.1)  Timeless (x.2)  Timeless x.
  Proof. by intros ???[??]; split; apply (timeless _). Qed.
558 559
  Global Instance prod_discrete_cofe : Discrete A  Discrete B  Discrete prodC.
  Proof. intros ?? [??]; apply _. Qed.
560 561 562 563 564
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

565
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
566 567 568 569 570 571 572 573 574
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
Instance prodC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@prodC_map A A' B B').
Proof. intros f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.

575 576
(** Functors *)
Structure cFunctor := CFunctor {
577
  cFunctor_car : ofeT  ofeT  ofeT;
578 579
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
580 581
  cFunctor_ne {A1 A2 B1 B2} n :
    Proper (dist n ==> dist n) (@cFunctor_map A1 A2 B1 B2);
582
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
583 584 585 586 587
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
588
Existing Instance cFunctor_ne.
589 590
Instance: Params (@cFunctor_map) 5.

591 592 593
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

594 595 596
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

597
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
598 599
Coercion cFunctor_diag : cFunctor >-> Funclass.

600
Program Definition constCF (B : ofeT) : cFunctor :=
601 602
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
603
Coercion constCF : ofeT >-> cFunctor.
604

605
Instance constCF_contractive B : cFunctorContractive (constCF B).
606
Proof. rewrite /cFunctorContractive; apply _. Qed.
607 608 609 610

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
611
Notation "∙" := idCF : cFunctor_scope.
612

613 614 615 616 617
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
618 619 620
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
621 622 623 624 625
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
626
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
627

628 629 630 631 632 633 634 635
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

636
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') n :
637 638 639
  Proper (dist n ==> dist n) (compose f : (A -c> B)  A -c> B').
Proof. intros g g' Hf x; simpl. by rewrite (Hf x). Qed.

640
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
641
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
642 643
Instance ofe_funC_map_ne {A B B'} n :
  Proper (dist n ==> dist n) (@ofe_funC_map A B B').
644 645
Proof. intros f f' Hf g x. apply Hf. Qed.

646 647 648
Program Definition ofe_funCF (T : Type) (F : cFunctor) : cFunctor := {|
  cFunctor_car A B := ofe_funC T (cFunctor_car F A B);
  cFunctor_map A1 A2 B1 B2 fg := ofe_funC_map (cFunctor_map F fg)
649 650
|}.
Next Obligation.
651
  intros ?? A1 A2 B1 B2 n ???; by apply ofe_funC_map_ne; apply cFunctor_ne.
652 653 654 655 656 657
Qed.
Next Obligation. intros F1 F2 A B ??. by rewrite /= /compose /= !cFunctor_id. Qed.
Next Obligation.
  intros T F A1 A2 A3 B1 B2 B3 f g f' g' ??; simpl.
  by rewrite !cFunctor_compose.
Qed.
658
Notation "T -c> F" := (ofe_funCF T%type F%CF) : cFunctor_scope.
659

660 661
Instance ofe_funCF_contractive (T : Type) (F : cFunctor) :
  cFunctorContractive F  cFunctorContractive (ofe_funCF T F).
662 663
Proof.
  intros ?? A1 A2 B1 B2 n ???;
664
    by apply ofe_funC_map_ne; apply cFunctor_contractive.
665 666
Qed.

667
Program Definition ofe_morCF (F1 F2 : cFunctor) : cFunctor := {|
668
  cFunctor_car A B := cFunctor_car F1 B A -n> cFunctor_car F2 A B;
Ralf Jung's avatar
Ralf Jung committed
669
  cFunctor_map A1 A2 B1 B2 fg :=
670
    ofe_morC_map (cFunctor_map F1 (fg.2, fg.1)) (cFunctor_map F2 fg)
Ralf Jung's avatar
Ralf Jung committed
671
|}.
672 673
Next Obligation.
  intros F1 F2 A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
674
  apply ofe_morC_map_ne; apply cFunctor_ne; split; by apply Hfg.
675
Qed.
Ralf Jung's avatar
Ralf Jung committed
676
Next Obligation.
677 678
  intros F1 F2 A B [f ?] ?; simpl. rewrite /= !cFunctor_id.
  apply (ne_proper f). apply cFunctor_id.
Ralf Jung's avatar
Ralf Jung committed
679 680
Qed.
Next Obligation.
681 682
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [h ?] ?; simpl in *.
  rewrite -!cFunctor_compose. do 2 apply (ne_proper _). apply cFunctor_compose.
Ralf Jung's avatar
Ralf Jung committed
683
Qed.
684
Notation "F1 -n> F2" := (ofe_morCF F1%CF F2%CF) : cFunctor_scope.
Ralf Jung's avatar
Ralf Jung committed
685

686
Instance ofe_morCF_contractive F1 F2 :
687
  cFunctorContractive F1  cFunctorContractive F2 
688
  cFunctorContractive (ofe_morCF F1 F2).
689 690
Proof.
  intros ?? A1 A2 B1 B2 n [f g] [f' g'] Hfg; simpl in *.
691
  apply ofe_morC_map_ne; apply cFunctor_contractive; destruct n, Hfg; by split.
692 693
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
694 695
(** Sum *)
Section sum.
696
  Context {A B : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
697 698 699 700 701 702 703

  Instance sum_dist : Dist (A + B) := λ n, sum_relation (dist n) (dist n).
  Global Instance inl_ne : Proper (dist n ==> dist n) (@inl A B) := _.
  Global Instance inr_ne : Proper (dist n ==> dist n) (@inr A B) := _.
  Global Instance inl_ne_inj : Inj (dist n) (dist n) (@inl A B) := _.
  Global Instance inr_ne_inj : Inj (dist n) (dist n) (@inr A B) := _.

704 705 706 707 708 709 710 711 712 713 714 715
  Definition sum_ofe_mixin : OfeMixin (A + B).
  Proof.
    split.
    - intros x y; split=> Hx.
      + destruct Hx=> n; constructor; by apply equiv_dist.
      + destruct (Hx 0); constructor; apply equiv_dist=> n; by apply (inj _).
    - apply _.
    - destruct 1; constructor; by apply dist_S.
  Qed.
  Canonical Structure sumC : ofeT := OfeT (A + B) sum_ofe_mixin.

  Program Definition inl_chain (c : chain sumC) (a : A) : chain A :=
Robbert Krebbers's avatar
Robbert Krebbers committed
716 717
    {| chain_car n := match c n return _ with inl a' => a' | _ => a end |}.
  Next Obligation. intros c a n i ?; simpl. by destruct (chain_cauchy c n i). Qed.
718
  Program Definition inr_chain (c : chain sumC) (b : B) : chain B :=
Robbert Krebbers's avatar
Robbert Krebbers committed
719 720 721
    {| chain_car n := match c n return _ with inr b' => b' | _ => b end |}.
  Next Obligation. intros c b n i ?; simpl. by destruct (chain_cauchy c n i). Qed.

722
  Definition sum_compl `{Cofe A, Cofe B} : Compl sumC := λ c,
Robbert Krebbers's avatar
Robbert Krebbers committed
723 724 725 726
    match c 0 with
    | inl a => inl (compl (inl_chain c a))
    | inr b => inr (compl (inr_chain c b))
    end.
727 728 729 730 731 732 733
  Global Program Instance sum_cofe `{Cofe A, Cofe B} : Cofe sumC :=
    { compl := sum_compl }.
  Next Obligation.
    intros ?? n c; rewrite /compl /sum_compl.
    feed inversion (chain_cauchy c 0 n); first by auto with lia; constructor.
    - rewrite (conv_compl n (inl_chain c _)) /=. destruct (c n); naive_solver.
    - rewrite (conv_compl n (inr_chain c _)) /=. destruct (c n); naive_solver.
Robbert Krebbers's avatar
Robbert Krebbers committed
734 735 736 737 738 739 740 741 742 743 744 745 746
  Qed.

  Global Instance inl_timeless (x : A) : Timeless x  Timeless (inl x).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance inr_timeless (y : B) : Timeless y  Timeless (inr y).
  Proof. inversion_clear 2; constructor; by apply (timeless _). Qed.
  Global Instance sum_discrete_cofe : Discrete A  Discrete B  Discrete sumC.
  Proof. intros ?? [?|?]; apply _. Qed.
End sum.

Arguments sumC : clear implicits.
Typeclasses Opaque sum_dist.

747
Instance sum_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@sum_map A A' B B').
Proof.
  intros f f' Hf g g' Hg ??; destruct 1; constructor; [by apply Hf|by apply Hg].
Qed.
Definition sumC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  sumC A B -n> sumC A' B' := CofeMor (sum_map f g).
Instance sumC_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n) (@sumC_map A A' B B').
Proof. intros f f' Hf g g' Hg [?|?]; constructor; [apply Hf|apply Hg]. Qed.

Program Definition sumCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := sumC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    sumC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply sumC_map_ne; apply cFunctor_ne.
Qed.
Next Obligation. by intros F1 F2 A B [?|?]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [?|?]; simpl;
    by rewrite !cFunctor_compose.
Qed.
772
Notation "F1 + F2" := (sumCF F1%CF F2%CF) : cFunctor_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
773 774 775 776 777