ofe.v 48.1 KB
Newer Older
1
From iris.algebra Require Export base.
2
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
3

4
(** This files defines (a shallow embedding of) the category of OFEs:
5 6 7 8 9 10 11 12
    Complete ordered families of equivalences. This is a cartesian closed
    category, and mathematically speaking, the entire development lives
    in this category. However, we will generally prefer to work with raw
    Coq functions plus some registered Proper instances for non-expansiveness.
    This makes writing such functions much easier. It turns out that it many 
    cases, we do not even need non-expansiveness.
*)

Robbert Krebbers's avatar
Robbert Krebbers committed
13 14
(** Unbundeled version *)
Class Dist A := dist : nat  relation A.
15
Instance: Params (@dist) 3.
16 17
Notation "x ≡{ n }≡ y" := (dist n x y)
  (at level 70, n at next level, format "x  ≡{ n }≡  y").
18
Hint Extern 0 (_ {_} _) => reflexivity.
19
Hint Extern 0 (_ {_} _) => symmetry; assumption.
20 21
Notation NonExpansive f := ( n, Proper (dist n ==> dist n) f).
Notation NonExpansive2 f := ( n, Proper (dist n ==> dist n ==> dist n) f).
22

23
Tactic Notation "ofe_subst" ident(x) :=
24
  repeat match goal with
25
  | _ => progress simplify_eq/=
26 27 28
  | H:@dist ?A ?d ?n x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
  end.
29
Tactic Notation "ofe_subst" :=
30
  repeat match goal with
31
  | _ => progress simplify_eq/=
32 33
  | H:@dist ?A ?d ?n ?x _ |- _ => setoid_subst_aux (@dist A d n) x
  | H:@dist ?A ?d ?n _ ?x |- _ => symmetry in H;setoid_subst_aux (@dist A d n) x
34
  end.
Robbert Krebbers's avatar
Robbert Krebbers committed
35

Ralf Jung's avatar
Ralf Jung committed
36 37 38 39 40 41 42 43
Section mixin.
  Local Set Primitive Projections.
  Record OfeMixin A `{Equiv A, Dist A} := {
    mixin_equiv_dist x y : x  y   n, x {n} y;
    mixin_dist_equivalence n : Equivalence (dist n);
    mixin_dist_S n x y : x {S n} y  x {n} y
  }.
End mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
44 45

(** Bundeled version *)
46 47 48 49 50
Structure ofeT := OfeT' {
  ofe_car :> Type;
  ofe_equiv : Equiv ofe_car;
  ofe_dist : Dist ofe_car;
  ofe_mixin : OfeMixin ofe_car;
51
  _ : Type
Robbert Krebbers's avatar
Robbert Krebbers committed
52
}.
53 54 55 56 57 58 59 60 61
Arguments OfeT' _ {_ _} _ _.
Notation OfeT A m := (OfeT' A m A).
Add Printing Constructor ofeT.
Hint Extern 0 (Equiv _) => eapply (@ofe_equiv _) : typeclass_instances.
Hint Extern 0 (Dist _) => eapply (@ofe_dist _) : typeclass_instances.
Arguments ofe_car : simpl never.
Arguments ofe_equiv : simpl never.
Arguments ofe_dist : simpl never.
Arguments ofe_mixin : simpl never.
62

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
(** When declaring instances of subclasses of OFE (like CMRAs and unital CMRAs)
we need Coq to *infer* the canonical OFE instance of a given type and take the
mixin out of it. This makes sure we do not use two different OFE instances in
different places (see for example the constructors [CMRAT] and [UCMRAT] in the
file [cmra.v].)

In order to infer the OFE instance, we use the definition [ofe_mixin_of'] which
is inspired by the [clone] trick in ssreflect. It works as follows, when type
checking [@ofe_mixin_of' A ?Ac id] Coq faces a unification problem:

  ofe_car ?Ac  ~  A

which will resolve [?Ac] to the canonical OFE instance corresponding to [A]. The
definition [@ofe_mixin_of' A ?Ac id] will then provide the corresponding mixin.
Note that type checking of [ofe_mixin_of' A id] will fail when [A] does not have
a canonical OFE instance.

The notation [ofe_mixin_of A] that we define on top of [ofe_mixin_of' A id]
hides the [id] and normalizes the mixin to head normal form. The latter is to
ensure that we do not end up with redundant canonical projections to the mixin,
i.e. them all being of the shape [ofe_mixin_of' A id]. *)
Definition ofe_mixin_of' A {Ac : ofeT} (f : Ac  A) : OfeMixin Ac := ofe_mixin Ac.
Notation ofe_mixin_of A :=
  ltac:(let H := eval hnf in (ofe_mixin_of' A id) in exact H) (only parsing).

88
(** Lifting properties from the mixin *)
89 90
Section ofe_mixin.
  Context {A : ofeT}.
91
  Implicit Types x y : A.
92
  Lemma equiv_dist x y : x  y   n, x {n} y.
93
  Proof. apply (mixin_equiv_dist _ (ofe_mixin A)). Qed.
94
  Global Instance dist_equivalence n : Equivalence (@dist A _ n).
95
  Proof. apply (mixin_dist_equivalence _ (ofe_mixin A)). Qed.
96
  Lemma dist_S n x y : x {S n} y  x {n} y.
97 98
  Proof. apply (mixin_dist_S _ (ofe_mixin A)). Qed.
End ofe_mixin.
99

Robbert Krebbers's avatar
Robbert Krebbers committed
100 101
Hint Extern 1 (_ {_} _) => apply equiv_dist; assumption.

102 103 104 105 106 107 108
(** Discrete OFEs and discrete OFE elements *)
Class Discrete {A : ofeT} (x : A) := discrete y : x {0} y  x  y.
Arguments discrete {_} _ {_} _ _.
Hint Mode Discrete + ! : typeclass_instances.
Instance: Params (@Discrete) 1.

Class OFEDiscrete (A : ofeT) := ofe_discrete_discrete (x : A) :> Discrete x.
109
Hint Mode OFEDiscrete ! : typeclass_instances.
110 111 112 113 114 115 116 117 118

(** OFEs with a completion *)
Record chain (A : ofeT) := {
  chain_car :> nat  A;
  chain_cauchy n i : n  i  chain_car i {n} chain_car n
}.
Arguments chain_car {_} _ _.
Arguments chain_cauchy {_} _ _ _ _.

119
Program Definition chain_map {A B : ofeT} (f : A  B)
120
    `{!NonExpansive f} (c : chain A) : chain B :=
121 122 123
  {| chain_car n := f (c n) |}.
Next Obligation. by intros A B f Hf c n i ?; apply Hf, chain_cauchy. Qed.

124 125 126 127 128 129
Notation Compl A := (chain A%type  A).
Class Cofe (A : ofeT) := {
  compl : Compl A;
  conv_compl n c : compl c {n} c n;
}.
Arguments compl : simpl never.
130

131
Lemma compl_chain_map `{Cofe A, Cofe B} (f : A  B) c `(NonExpansive f) :
132 133 134
  compl (chain_map f c)  f (compl c).
Proof. apply equiv_dist=>n. by rewrite !conv_compl. Qed.

135 136 137 138 139 140 141 142
Program Definition chain_const {A : ofeT} (a : A) : chain A :=
  {| chain_car n := a |}.
Next Obligation. by intros A a n i _. Qed.

Lemma compl_chain_const {A : ofeT} `{!Cofe A} (a : A) :
  compl (chain_const a)  a.
Proof. apply equiv_dist=>n. by rewrite conv_compl. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
143
(** General properties *)
144
Section ofe.
145
  Context {A : ofeT}.
146
  Implicit Types x y : A.
147
  Global Instance ofe_equivalence : Equivalence (() : relation A).
Robbert Krebbers's avatar
Robbert Krebbers committed
148 149
  Proof.
    split.
150 151
    - by intros x; rewrite equiv_dist.
    - by intros x y; rewrite !equiv_dist.
152
    - by intros x y z; rewrite !equiv_dist; intros; trans y.
Robbert Krebbers's avatar
Robbert Krebbers committed
153
  Qed.
154
  Global Instance dist_ne n : Proper (dist n ==> dist n ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
155 156
  Proof.
    intros x1 x2 ? y1 y2 ?; split; intros.
157 158
    - by trans x1; [|trans y1].
    - by trans x2; [|trans y2].
Robbert Krebbers's avatar
Robbert Krebbers committed
159
  Qed.
160
  Global Instance dist_proper n : Proper (() ==> () ==> iff) (@dist A _ n).
Robbert Krebbers's avatar
Robbert Krebbers committed
161
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
162
    by move => x1 x2 /equiv_dist Hx y1 y2 /equiv_dist Hy; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164 165
  Qed.
  Global Instance dist_proper_2 n x : Proper (() ==> iff) (dist n x).
  Proof. by apply dist_proper. Qed.
166 167
  Global Instance Discrete_proper : Proper (() ==> iff) (@Discrete A).
  Proof. intros x y Hxy. rewrite /Discrete. by setoid_rewrite Hxy. Qed.
168

Robbert Krebbers's avatar
Robbert Krebbers committed
169
  Lemma dist_le n n' x y : x {n} y  n'  n  x {n'} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
  Proof. induction 2; eauto using dist_S. Qed.
171 172
  Lemma dist_le' n n' x y : n'  n  x {n} y  x {n'} y.
  Proof. intros; eauto using dist_le. Qed.
173 174
  Instance ne_proper {B : ofeT} (f : A  B) `{!NonExpansive f} :
    Proper (() ==> ()) f | 100.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  Proof. by intros x1 x2; rewrite !equiv_dist; intros Hx n; rewrite (Hx n). Qed.
176
  Instance ne_proper_2 {B C : ofeT} (f : A  B  C) `{!NonExpansive2 f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
177 178 179
    Proper (() ==> () ==> ()) f | 100.
  Proof.
     unfold Proper, respectful; setoid_rewrite equiv_dist.
Robbert Krebbers's avatar
Robbert Krebbers committed
180
     by intros x1 x2 Hx y1 y2 Hy n; rewrite (Hx n) (Hy n).
Robbert Krebbers's avatar
Robbert Krebbers committed
181
  Qed.
182

183
  Lemma conv_compl' `{Cofe A} n (c : chain A) : compl c {n} c (S n).
184 185 186 187
  Proof.
    transitivity (c n); first by apply conv_compl. symmetry.
    apply chain_cauchy. omega.
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
188

189
  Lemma discrete_iff n (x : A) `{!Discrete x} y : x  y  x {n} y.
190
  Proof.
191
    split; intros; auto. apply (discrete _), dist_le with n; auto with lia.
192
  Qed.
193
  Lemma discrete_iff_0 n (x : A) `{!Discrete x} y : x {0} y  x {n} y.
Robbert Krebbers's avatar
Robbert Krebbers committed
194
  Proof.
195
    split=> ?. by apply equiv_dist, (discrete _). eauto using dist_le with lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
196
  Qed.
197
End ofe.
Robbert Krebbers's avatar
Robbert Krebbers committed
198

199
(** Contractive functions *)
200
Definition dist_later `{Dist A} (n : nat) (x y : A) : Prop :=
201
  match n with 0 => True | S n => x {n} y end.
202
Arguments dist_later _ _ !_ _ _ /.
203

204
Global Instance dist_later_equivalence (A : ofeT) n : Equivalence (@dist_later A _ n).
205 206
Proof. destruct n as [|n]. by split. apply dist_equivalence. Qed.

207 208 209
Lemma dist_dist_later {A : ofeT} n (x y : A) : dist n x y  dist_later n x y.
Proof. intros Heq. destruct n; first done. exact: dist_S. Qed.

210 211 212 213 214 215 216 217 218 219 220
Lemma dist_later_dist {A : ofeT} n (x y : A) : dist_later (S n) x y  dist n x y.
Proof. done. Qed.

(* We don't actually need this lemma (as our tactics deal with this through
   other means), but technically speaking, this is the reason why
   pre-composing a non-expansive function to a contractive function
   preserves contractivity. *)
Lemma ne_dist_later {A B : ofeT} (f : A  B) :
  NonExpansive f   n, Proper (dist_later n ==> dist_later n) f.
Proof. intros Hf [|n]; last exact: Hf. hnf. by intros. Qed.

221
Notation Contractive f := ( n, Proper (dist_later n ==> dist n) f).
222

223
Instance const_contractive {A B : ofeT} (x : A) : Contractive (@const A B x).
224 225
Proof. by intros n y1 y2. Qed.

226
Section contractive.
227
  Local Set Default Proof Using "Type*".
228 229 230 231
  Context {A B : ofeT} (f : A  B) `{!Contractive f}.
  Implicit Types x y : A.

  Lemma contractive_0 x y : f x {0} f y.
232
  Proof. by apply (_ : Contractive f). Qed.
233
  Lemma contractive_S n x y : x {n} y  f x {S n} f y.
234
  Proof. intros. by apply (_ : Contractive f). Qed.
235

236 237
  Global Instance contractive_ne : NonExpansive f | 100.
  Proof. by intros n x y ?; apply dist_S, contractive_S. Qed.
238 239 240 241
  Global Instance contractive_proper : Proper (() ==> ()) f | 100.
  Proof. apply (ne_proper _). Qed.
End contractive.

242 243
Ltac f_contractive :=
  match goal with
Robbert Krebbers's avatar
Robbert Krebbers committed
244 245 246
  | |- ?f _ {_} ?f _ => simple apply (_ : Proper (dist_later _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => simple apply (_ : Proper (dist_later _ ==> _ ==> _) f)
  | |- ?f _ _ {_} ?f _ _ => simple apply (_ : Proper (_ ==> dist_later _ ==> _) f)
247 248
  end;
  try match goal with
249
  | |- @dist_later ?A _ ?n ?x ?y =>
250
         destruct n as [|n]; [exact I|change (@dist A _ n x y)]
251
  end;
Robbert Krebbers's avatar
Robbert Krebbers committed
252
  try simple apply reflexivity.
253

Robbert Krebbers's avatar
Robbert Krebbers committed
254 255
Ltac solve_contractive :=
  solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]).
Robbert Krebbers's avatar
Robbert Krebbers committed
256

Robbert Krebbers's avatar
Robbert Krebbers committed
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
(** Limit preserving predicates *)
Class LimitPreserving `{!Cofe A} (P : A  Prop) : Prop :=
  limit_preserving (c : chain A) : ( n, P (c n))  P (compl c).
Hint Mode LimitPreserving + + ! : typeclass_instances.

Section limit_preserving.
  Context `{Cofe A}.
  (* These are not instances as they will never fire automatically...
     but they can still be helpful in proving things to be limit preserving. *)

  Lemma limit_preserving_ext (P Q : A  Prop) :
    ( x, P x  Q x)  LimitPreserving P  LimitPreserving Q.
  Proof. intros HP Hlimit c ?. apply HP, Hlimit=> n; by apply HP. Qed.

  Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _, P).
  Proof. intros c HP. apply (HP 0). Qed.

274
  Lemma limit_preserving_discrete (P : A  Prop) :
Robbert Krebbers's avatar
Robbert Krebbers committed
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
    Proper (dist 0 ==> impl) P  LimitPreserving P.
  Proof. intros PH c Hc. by rewrite (conv_compl 0). Qed.

  Lemma limit_preserving_and (P1 P2 : A  Prop) :
    LimitPreserving P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof. intros Hlim1 Hlim2 c Hc. split. apply Hlim1, Hc. apply Hlim2, Hc. Qed.

  Lemma limit_preserving_impl (P1 P2 : A  Prop) :
    Proper (dist 0 ==> impl) P1  LimitPreserving P2 
    LimitPreserving (λ x, P1 x  P2 x).
  Proof.
    intros Hlim1 Hlim2 c Hc HP1. apply Hlim2=> n; apply Hc.
    eapply Hlim1, HP1. apply dist_le with n; last lia. apply (conv_compl n).
  Qed.

  Lemma limit_preserving_forall {B} (P : B  A  Prop) :
    ( y, LimitPreserving (P y)) 
    LimitPreserving (λ x,  y, P y x).
  Proof. intros Hlim c Hc y. by apply Hlim. Qed.
End limit_preserving.

Robbert Krebbers's avatar
Robbert Krebbers committed
297
(** Fixpoint *)
298
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A  A)
299
  `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
300
Next Obligation.
301
  intros A ? f ? n.
302
  induction n as [|n IH]=> -[|i] //= ?; try omega.
303 304
  - apply (contractive_0 f).
  - apply (contractive_S f), IH; auto with omega.
Robbert Krebbers's avatar
Robbert Krebbers committed
305
Qed.
306

307
Program Definition fixpoint_def `{Cofe A, Inhabited A} (f : A  A)
308
  `{!Contractive f} : A := compl (fixpoint_chain f).
309 310 311
Definition fixpoint_aux : seal (@fixpoint_def). by eexists. Qed.
Definition fixpoint {A AC AiH} f {Hf} := unseal fixpoint_aux A AC AiH f Hf.
Definition fixpoint_eq : @fixpoint = @fixpoint_def := seal_eq fixpoint_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
312 313

Section fixpoint.
314
  Context `{Cofe A, Inhabited A} (f : A  A) `{!Contractive f}.
315

316
  Lemma fixpoint_unfold : fixpoint f  f (fixpoint f).
Robbert Krebbers's avatar
Robbert Krebbers committed
317
  Proof.
318 319
    apply equiv_dist=>n.
    rewrite fixpoint_eq /fixpoint_def (conv_compl n (fixpoint_chain f)) //.
320
    induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
  Qed.
322 323 324

  Lemma fixpoint_unique (x : A) : x  f x  x  fixpoint f.
  Proof.
325 326 327
    rewrite !equiv_dist=> Hx n. induction n as [|n IH]; simpl in *.
    - rewrite Hx fixpoint_unfold; eauto using contractive_0.
    - rewrite Hx fixpoint_unfold. apply (contractive_S _), IH.
328 329
  Qed.

330
  Lemma fixpoint_ne (g : A  A) `{!Contractive g} n :
331
    ( z, f z {n} g z)  fixpoint f {n} fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
332
  Proof.
333
    intros Hfg. rewrite fixpoint_eq /fixpoint_def
Robbert Krebbers's avatar
Robbert Krebbers committed
334
      (conv_compl n (fixpoint_chain f)) (conv_compl n (fixpoint_chain g)) /=.
335 336
    induction n as [|n IH]; simpl in *; [by rewrite !Hfg|].
    rewrite Hfg; apply contractive_S, IH; auto using dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
337
  Qed.
338 339
  Lemma fixpoint_proper (g : A  A) `{!Contractive g} :
    ( x, f x  g x)  fixpoint f  fixpoint g.
Robbert Krebbers's avatar
Robbert Krebbers committed
340
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_ne. Qed.
341 342

  Lemma fixpoint_ind (P : A  Prop) :
343
    Proper (() ==> impl) P 
344
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
345
    LimitPreserving P 
346 347 348 349
    P (fixpoint f).
  Proof.
    intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
    assert (Hcauch :  n i : nat, n  i  chcar i {n} chcar n).
Robbert Krebbers's avatar
Robbert Krebbers committed
350 351
    { intros n. rewrite /chcar. induction n as [|n IH]=> -[|i] //=;
        eauto using contractive_0, contractive_S with omega. }
352
    set (fp2 := compl {| chain_cauchy := Hcauch |}).
Robbert Krebbers's avatar
Robbert Krebbers committed
353 354 355 356
    assert (f fp2  fp2).
    { apply equiv_dist=>n. rewrite /fp2 (conv_compl n) /= /chcar.
      induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S. }
    rewrite -(fixpoint_unique fp2) //.
Robbert Krebbers's avatar
Robbert Krebbers committed
357
    apply Hlim=> n /=. by apply Nat_iter_ind.
358
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
359 360
End fixpoint.

Robbert Krebbers's avatar
Robbert Krebbers committed
361

362 363 364
(** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A  A)
  `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
365

366
Section fixpointK.
367
  Local Set Default Proof Using "Type*".
368
  Context `{Cofe A, Inhabited A} (f : A  A) (k : nat).
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  Context {f_contractive : Contractive (Nat.iter k f)} {f_ne : NonExpansive f}.
  (* Note than f_ne is crucial here:  there are functions f such that f^2 is contractive,
     but f is not non-expansive.
     Consider for example f: SPred → SPred (where SPred is "downclosed sets of natural numbers").
     Define f (using informative excluded middle) as follows:
     f(N) = N  (where N is the set of all natural numbers)
     f({0, ..., n}) = {0, ... n-1}  if n is even (so n-1 is at least -1, in which case we return the empty set)
     f({0, ..., n}) = {0, ..., n+2} if n is odd
     In other words, if we consider elements of SPred as ordinals, then we decreaste odd finite
     ordinals by 1 and increase even finite ordinals by 2.
     f is not non-expansive:  Consider f({0}) = ∅ and f({0,1}) = f({0,1,2,3}).
     The arguments are clearly 0-equal, but the results are not.

     Now consider g := f^2. We have
     g(N) = N
     g({0, ..., n}) = {0, ... n+1}  if n is even
     g({0, ..., n}) = {0, ..., n+4} if n is odd
     g is contractive.  All outputs contain 0, so they are all 0-equal.
     Now consider two n-equal inputs. We have to show that the outputs are n+1-equal.
     Either they both do not contain n in which case they have to be fully equal and
     hence so are the results.  Or else they both contain n, so the results will
     both contain n+1, so the results are n+1-equal.
   *)
392 393

  Let f_proper : Proper (() ==> ()) f := ne_proper f.
394
  Local Existing Instance f_proper.
395

396
  Lemma fixpointK_unfold : fixpointK k f  f (fixpointK k f).
397
  Proof.
398 399
    symmetry. rewrite /fixpointK. apply fixpoint_unique.
    by rewrite -Nat_iter_S_r Nat_iter_S -fixpoint_unfold.
400 401
  Qed.

402
  Lemma fixpointK_unique (x : A) : x  f x  x  fixpointK k f.
403
  Proof.
404 405
    intros Hf. apply fixpoint_unique. clear f_contractive.
    induction k as [|k' IH]=> //=. by rewrite -IH.
406 407
  Qed.

408
  Section fixpointK_ne.
409
    Context (g : A  A) `{g_contractive : !Contractive (Nat.iter k g)}.
410
    Context {g_ne : NonExpansive g}.
411

412
    Lemma fixpointK_ne n : ( z, f z {n} g z)  fixpointK k f {n} fixpointK k g.
413
    Proof.
414 415 416
      rewrite /fixpointK=> Hfg /=. apply fixpoint_ne=> z.
      clear f_contractive g_contractive.
      induction k as [|k' IH]=> //=. by rewrite IH Hfg.
417 418
    Qed.

419 420 421
    Lemma fixpointK_proper : ( z, f z  g z)  fixpointK k f  fixpointK k g.
    Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpointK_ne. Qed.
  End fixpointK_ne.
Ralf Jung's avatar
Ralf Jung committed
422 423 424 425

  Lemma fixpointK_ind (P : A  Prop) :
    Proper (() ==> impl) P 
    ( x, P x)  ( x, P x  P (f x)) 
Robbert Krebbers's avatar
Robbert Krebbers committed
426
    LimitPreserving P 
Ralf Jung's avatar
Ralf Jung committed
427 428
    P (fixpointK k f).
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
    intros. rewrite /fixpointK. apply fixpoint_ind; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
430
    intros; apply Nat_iter_ind; auto.
Ralf Jung's avatar
Ralf Jung committed
431
  Qed.
432
End fixpointK.
433

Robbert Krebbers's avatar
Robbert Krebbers committed
434
(** Mutual fixpoints *)
Ralf Jung's avatar
Ralf Jung committed
435
Section fixpointAB.
436 437
  Local Unset Default Proof Using.

Robbert Krebbers's avatar
Robbert Krebbers committed
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA : A  B  A).
  Context (fB : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.

  Local Definition fixpoint_AB (x : A) : B := fixpoint (fB x).
  Local Instance fixpoint_AB_contractive : Contractive fixpoint_AB.
  Proof.
    intros n x x' Hx; rewrite /fixpoint_AB.
    apply fixpoint_ne=> y. by f_contractive.
  Qed.

  Local Definition fixpoint_AA (x : A) : A := fA x (fixpoint_AB x).
  Local Instance fixpoint_AA_contractive : Contractive fixpoint_AA.
  Proof. solve_contractive. Qed.

  Definition fixpoint_A : A := fixpoint fixpoint_AA.
  Definition fixpoint_B : B := fixpoint_AB fixpoint_A.

  Lemma fixpoint_A_unfold : fA fixpoint_A fixpoint_B  fixpoint_A.
  Proof. by rewrite {2}/fixpoint_A (fixpoint_unfold _). Qed.
  Lemma fixpoint_B_unfold : fB fixpoint_A fixpoint_B  fixpoint_B.
  Proof. by rewrite {2}/fixpoint_B /fixpoint_AB (fixpoint_unfold _). Qed.

  Instance: Proper (() ==> () ==> ()) fA.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.
  Instance: Proper (() ==> () ==> ()) fB.
  Proof.
    apply ne_proper_2=> n x x' ? y y' ?. f_contractive; auto using dist_S.
  Qed.

  Lemma fixpoint_A_unique p q : fA p q  p  fB p q  q  p  fixpoint_A.
  Proof.
    intros HfA HfB. rewrite -HfA. apply fixpoint_unique. rewrite /fixpoint_AA.
    f_equiv=> //. apply fixpoint_unique. by rewrite HfA HfB.
  Qed.
  Lemma fixpoint_B_unique p q : fA p q  p  fB p q  q  q  fixpoint_B.
  Proof. intros. apply fixpoint_unique. by rewrite -fixpoint_A_unique. Qed.
Ralf Jung's avatar
Ralf Jung committed
479
End fixpointAB.
Robbert Krebbers's avatar
Robbert Krebbers committed
480

Ralf Jung's avatar
Ralf Jung committed
481
Section fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  Context `{Cofe A, Cofe B, !Inhabited A, !Inhabited B}.
  Context (fA fA' : A  B  A).
  Context (fB fB' : A  B  B).
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA}.
  Context `{ n, Proper (dist_later n ==> dist n ==> dist n) fA'}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB}.
  Context `{ n, Proper (dist_later n ==> dist_later n ==> dist n) fB'}.

  Lemma fixpoint_A_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_A fA fB {n} fixpoint_A fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z.
    rewrite /fixpoint_AA /fixpoint_AB HfA. f_equiv. by apply fixpoint_ne.
  Qed.
  Lemma fixpoint_B_ne n :
    ( x y, fA x y {n} fA' x y)  ( x y, fB x y {n} fB' x y) 
    fixpoint_B fA fB {n} fixpoint_B fA' fB'.
  Proof.
    intros HfA HfB. apply fixpoint_ne=> z. rewrite HfB. f_contractive.
    apply fixpoint_A_ne; auto using dist_S.
  Qed.

  Lemma fixpoint_A_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_A fA fB  fixpoint_A fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_A_ne. Qed.
  Lemma fixpoint_B_proper :
    ( x y, fA x y  fA' x y)  ( x y, fB x y  fB' x y) 
    fixpoint_B fA fB  fixpoint_B fA' fB'.
  Proof. setoid_rewrite equiv_dist; naive_solver eauto using fixpoint_B_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
513
End fixpointAB_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
514

515
(** Function space *)
516
(* We make [ofe_fun] a definition so that we can register it as a canonical
517
structure. *)
518
Definition ofe_fun (A : Type) (B : ofeT) := A  B.
519

520 521 522 523 524
Section ofe_fun.
  Context {A : Type} {B : ofeT}.
  Instance ofe_fun_equiv : Equiv (ofe_fun A B) := λ f g,  x, f x  g x.
  Instance ofe_fun_dist : Dist (ofe_fun A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_fun_ofe_mixin : OfeMixin (ofe_fun A B).
525 526 527 528 529 530 531 532 533 534
  Proof.
    split.
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
    - intros n; split.
      + by intros f x.
      + by intros f g ? x.
      + by intros f g h ?? x; trans (g x).
    - by intros n f g ? x; apply dist_S.
  Qed.
535
  Canonical Structure ofe_funC := OfeT (ofe_fun A B) ofe_fun_ofe_mixin.
536

537 538 539 540 541 542 543 544 545
  Program Definition ofe_fun_chain `(c : chain ofe_funC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Global Program Instance ofe_fun_cofe `{Cofe B} : Cofe ofe_funC :=
    { compl c x := compl (ofe_fun_chain c x) }.
  Next Obligation. intros ? n c x. apply (conv_compl n (ofe_fun_chain c x)). Qed.
End ofe_fun.

Arguments ofe_funC : clear implicits.
546
Notation "A -c> B" :=
547 548
  (ofe_funC A B) (at level 99, B at level 200, right associativity).
Instance ofe_fun_inhabited {A} {B : ofeT} `{Inhabited B} :
549 550
  Inhabited (A -c> B) := populate (λ _, inhabitant).

551
(** Non-expansive function space *)
552 553
Record ofe_mor (A B : ofeT) : Type := CofeMor {
  ofe_mor_car :> A  B;
554
  ofe_mor_ne : NonExpansive ofe_mor_car
Robbert Krebbers's avatar
Robbert Krebbers committed
555 556
}.
Arguments CofeMor {_ _} _ {_}.
557 558
Add Printing Constructor ofe_mor.
Existing Instance ofe_mor_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
559

560 561 562 563
Notation "'λne' x .. y , t" :=
  (@CofeMor _ _ (λ x, .. (@CofeMor _ _ (λ y, t) _) ..) _)
  (at level 200, x binder, y binder, right associativity).

564 565 566 567 568 569 570
Section ofe_mor.
  Context {A B : ofeT}.
  Global Instance ofe_mor_proper (f : ofe_mor A B) : Proper (() ==> ()) f.
  Proof. apply ne_proper, ofe_mor_ne. Qed.
  Instance ofe_mor_equiv : Equiv (ofe_mor A B) := λ f g,  x, f x  g x.
  Instance ofe_mor_dist : Dist (ofe_mor A B) := λ n f g,  x, f x {n} g x.
  Definition ofe_mor_ofe_mixin : OfeMixin (ofe_mor A B).
571 572
  Proof.
    split.
573
    - intros f g; split; [intros Hfg n k; apply equiv_dist, Hfg|].
Robbert Krebbers's avatar
Robbert Krebbers committed
574
      intros Hfg k; apply equiv_dist=> n; apply Hfg.
575
    - intros n; split.
576 577
      + by intros f x.
      + by intros f g ? x.
578
      + by intros f g h ?? x; trans (g x).
579
    - by intros n f g ? x; apply dist_S.
580
  Qed.
581 582 583 584 585 586 587 588 589 590 591
  Canonical Structure ofe_morC := OfeT (ofe_mor A B) ofe_mor_ofe_mixin.

  Program Definition ofe_mor_chain (c : chain ofe_morC)
    (x : A) : chain B := {| chain_car n := c n x |}.
  Next Obligation. intros c x n i ?. by apply (chain_cauchy c). Qed.
  Program Definition ofe_mor_compl `{Cofe B} : Compl ofe_morC := λ c,
    {| ofe_mor_car x := compl (ofe_mor_chain c x) |}.
  Next Obligation.
    intros ? c n x y Hx. by rewrite (conv_compl n (ofe_mor_chain c x))
      (conv_compl n (ofe_mor_chain c y)) /= Hx.
  Qed.
Jacques-Henri Jourdan's avatar
Typo  
Jacques-Henri Jourdan committed
592
  Global Program Instance ofe_mor_cofe `{Cofe B} : Cofe ofe_morC :=
593 594 595 596 597
    {| compl := ofe_mor_compl |}.
  Next Obligation.
    intros ? n c x; simpl.
    by rewrite (conv_compl n (ofe_mor_chain c x)) /=.
  Qed.
598

599 600 601
  Global Instance ofe_mor_car_ne :
    NonExpansive2 (@ofe_mor_car A B).
  Proof. intros n f g Hfg x y Hx; rewrite Hx; apply Hfg. Qed.
602 603 604
  Global Instance ofe_mor_car_proper :
    Proper (() ==> () ==> ()) (@ofe_mor_car A B) := ne_proper_2 _.
  Lemma ofe_mor_ext (f g : ofe_mor A B) : f  g   x, f x  g x.
605
  Proof. done. Qed.
606
End ofe_mor.
607

608
Arguments ofe_morC : clear implicits.
609
Notation "A -n> B" :=
610 611
  (ofe_morC A B) (at level 99, B at level 200, right associativity).
Instance ofe_mor_inhabited {A B : ofeT} `{Inhabited B} :
612
  Inhabited (A -n> B) := populate (λne _, inhabitant).
Robbert Krebbers's avatar
Robbert Krebbers committed
613

614
(** Identity and composition and constant function *)
Robbert Krebbers's avatar
Robbert Krebbers committed
615 616
Definition cid {A} : A -n> A := CofeMor id.
Instance: Params (@cid) 1.
617
Definition cconst {A B : ofeT} (x : B) : A -n> B := CofeMor (const x).
618
Instance: Params (@cconst) 2.
619

Robbert Krebbers's avatar
Robbert Krebbers committed
620 621 622 623 624
Definition ccompose {A B C}
  (f : B -n> C) (g : A -n> B) : A -n> C := CofeMor (f  g).
Instance: Params (@ccompose) 3.
Infix "◎" := ccompose (at level 40, left associativity).
Lemma ccompose_ne {A B C} (f1 f2 : B -n> C) (g1 g2 : A -n> B) n :
625
  f1 {n} f2  g1 {n} g2  f1  g1 {n} f2  g2.
Robbert Krebbers's avatar
Robbert Krebbers committed
626
Proof. by intros Hf Hg x; rewrite /= (Hg x) (Hf (g2 x)). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
627

Ralf Jung's avatar
Ralf Jung committed
628
(* Function space maps *)
629
Definition ofe_mor_map {A A' B B'} (f : A' -n> A) (g : B -n> B')
Ralf Jung's avatar
Ralf Jung committed
630
  (h : A -n> B) : A' -n> B' := g  h  f.
631 632
Instance ofe_mor_map_ne {A A' B B'} n :
  Proper (dist n ==> dist n ==> dist n ==> dist n) (@ofe_mor_map A A' B B').
633
Proof. intros ??? ??? ???. by repeat apply ccompose_ne. Qed.
Ralf Jung's avatar
Ralf Jung committed
634

635 636
Definition ofe_morC_map {A A' B B'} (f : A' -n> A) (g : B -n> B') :
  (A -n> B) -n> (A' -n>  B') := CofeMor (ofe_mor_map f g).
637 638
Instance ofe_morC_map_ne {A A' B B'} :
  NonExpansive2 (@ofe_morC_map A A' B B').
Ralf Jung's avatar
Ralf Jung committed
639
Proof.
640
  intros n f f' Hf g g' Hg ?. rewrite /= /ofe_mor_map.
641
  by repeat apply ccompose_ne.
Ralf Jung's avatar
Ralf Jung committed
642 643
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
644
(** unit *)
645 646
Section unit.
  Instance unit_dist : Dist unit := λ _ _ _, True.
647
  Definition unit_ofe_mixin : OfeMixin unit.
648
  Proof. by repeat split; try exists 0. Qed.
649
  Canonical Structure unitC : ofeT := OfeT unit unit_ofe_mixin.
Robbert Krebbers's avatar
Robbert Krebbers committed
650

651 652
  Global Program Instance unit_cofe : Cofe unitC := { compl x := () }.
  Next Obligation. by repeat split; try exists 0. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
653

654
  Global Instance unit_ofe_discrete : OFEDiscrete unitC.
Robbert Krebbers's avatar
Robbert Krebbers committed
655
  Proof. done. Qed.
656
End unit.
Robbert Krebbers's avatar
Robbert Krebbers committed
657 658

(** Product *)
659
Section product.
660
  Context {A B : ofeT}.
661 662 663

  Instance prod_dist : Dist (A * B) := λ n, prod_relation (dist n) (dist n).
  Global Instance pair_ne :
664 665 666
    NonExpansive2 (@pair A B) := _.
  Global Instance fst_ne : NonExpansive (@fst A B) := _.
  Global Instance snd_ne : NonExpansive (@snd A B) := _.
667
  Definition prod_ofe_mixin : OfeMixin (A * B).
668 669
  Proof.
    split.
670
    - intros x y; unfold dist, prod_dist, equiv, prod_equiv, prod_relation.
671
      rewrite !equiv_dist; naive_solver.
672 673
    - apply _.
    - by intros n [x1 y1] [x2 y2] [??]; split; apply dist_S.
674
  Qed.
675 676 677 678 679 680 681 682 683
  Canonical Structure prodC : ofeT := OfeT (A * B) prod_ofe_mixin.

  Global Program Instance prod_cofe `{Cofe A, Cofe B} : Cofe prodC :=
    { compl c := (compl (chain_map fst c), compl (chain_map snd c)) }.
  Next Obligation.
    intros ?? n c; split. apply (conv_compl n (chain_map fst c)).
    apply (conv_compl n (chain_map snd c)).
  Qed.

684 685 686
  Global Instance prod_discrete (x : A * B) :
    Discrete (x.1)  Discrete (x.2)  Discrete x.
  Proof. by intros ???[??]; split; apply (discrete _). Qed.
687
  Global Instance prod_ofe_discrete : OFEDiscrete A  OFEDiscrete B  OFEDiscrete prodC.
688
  Proof. intros ?? [??]; apply _. Qed.
689 690 691 692 693
End product.

Arguments prodC : clear implicits.
Typeclasses Opaque prod_dist.

694
Instance prod_map_ne {A A' B B' : ofeT} n :
Robbert Krebbers's avatar
Robbert Krebbers committed
695 696 697 698 699
  Proper ((dist n ==> dist n) ==> (dist n ==> dist n) ==>
           dist n ==> dist n) (@prod_map A A' B B').
Proof. by intros f f' Hf g g' Hg ?? [??]; split; [apply Hf|apply Hg]. Qed.
Definition prodC_map {A A' B B'} (f : A -n> A') (g : B -n> B') :
  prodC A B -n> prodC A' B' := CofeMor (prod_map f g).
700 701 702
Instance prodC_map_ne {A A' B B'} :
  NonExpansive2 (@prodC_map A A' B B').
Proof. intros n f f' Hf g g' Hg [??]; split; [apply Hf|apply Hg]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
703

704 705
(** Functors *)
Structure cFunctor := CFunctor {
706
  cFunctor_car : ofeT  ofeT  ofeT;
707 708
  cFunctor_map {A1 A2 B1 B2} :
    ((A2 -n> A1) * (B1 -n> B2))  cFunctor_car A1 B1 -n> cFunctor_car A2 B2;
709 710
  cFunctor_ne {A1 A2 B1 B2} :
    NonExpansive (@cFunctor_map A1 A2 B1 B2);
711
  cFunctor_id {A B : ofeT} (x : cFunctor_car A B) :
712 713 714 715 716
    cFunctor_map (cid,cid) x  x;
  cFunctor_compose {A1 A2 A3 B1 B2 B3}
      (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x :
    cFunctor_map (fg, g'f') x  cFunctor_map (g,g') (cFunctor_map (f,f') x)
}.
717
Existing Instance cFunctor_ne.
718 719
Instance: Params (@cFunctor_map) 5.

720 721 722
Delimit Scope cFunctor_scope with CF.
Bind Scope cFunctor_scope with cFunctor.

723 724 725
Class cFunctorContractive (F : cFunctor) :=
  cFunctor_contractive A1 A2 B1 B2 :> Contractive (@cFunctor_map F A1 A2 B1 B2).

726
Definition cFunctor_diag (F: cFunctor) (A: ofeT) : ofeT := cFunctor_car F A A.
727 728
Coercion cFunctor_diag : cFunctor >-> Funclass.

729
Program Definition constCF (B : ofeT) : cFunctor :=
730 731
  {| cFunctor_car A1 A2 := B; cFunctor_map A1 A2 B1 B2 f := cid |}.
Solve Obligations with done.
732
Coercion constCF : ofeT >-> cFunctor.
733

734
Instance constCF_contractive B : cFunctorContractive (constCF B).
735
Proof. rewrite /cFunctorContractive; apply _. Qed.
736 737 738 739

Program Definition idCF : cFunctor :=
  {| cFunctor_car A1 A2 := A2; cFunctor_map A1 A2 B1 B2 f := f.2 |}.
Solve Obligations with done.
740
Notation "∙" := idCF : cFunctor_scope.
741

742 743 744 745 746
Program Definition prodCF (F1 F2 : cFunctor) : cFunctor := {|
  cFunctor_car A B := prodC (cFunctor_car F1 A B) (cFunctor_car F2 A B);
  cFunctor_map A1 A2 B1 B2 fg :=
    prodC_map (cFunctor_map F1 fg) (cFunctor_map F2 fg)
|}.
747 748 749
Next Obligation.
  intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply cFunctor_ne.
Qed.
750 751 752 753 754
Next Obligation. by intros F1 F2 A B [??]; rewrite /= !cFunctor_id. Qed.
Next Obligation.
  intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl.
  by rewrite !cFunctor_compose.
Qed.
755
Notation "F1 * F2" := (prodCF F1%CF F2%CF) : cFunctor_scope.
756

757 758 759 760 761 762 763 764
Instance prodCF_contractive F1 F2 :
  cFunctorContractive F1  cFunctorContractive F2 
  cFunctorContractive (prodCF F1 F2).
Proof.
  intros ?? A1 A2 B1 B2 n ???;
    by apply prodC_map_ne; apply cFunctor_contractive.
Qed.

765 766 767
Instance compose_ne {A} {B B' : ofeT} (f : B -n> B') :
  NonExpansive (compose f : (A -c> B)  A -c> B').
Proof. intros n g g' Hf x; simpl. by rewrite (Hf x). Qed.
768

769
Definition ofe_funC_map {A B B'} (f : B -n> B') : (A -c> B) -n> (A -c> B') :=
770
  @CofeMor (_ -c> _) (_ -c> _) (compose f) _.
771 772 773
Instance ofe_funC_map_ne {A B B'} :
  NonExpansive (@ofe_funC_map A B B').
Proof. intros n f f' Hf g x. apply Hf. Qed.
774