frac_auth.v 5.28 KB
Newer Older
1
2
From iris.algebra Require Export frac auth.
From iris.algebra Require Export updates local_updates.
3
From iris.algebra Require Import proofmode_classes.
4

5
6
7
8
9
10
11
(** Authoritative CMRA where the NON-authoritative parts can be fractional.
  This CMRA allows the original non-authoritative element `◯ a` to be split into
  fractional parts `◯!{q} a`. Using `◯! a ≡ ◯!{1} a` is in effect the same as
  using the original `◯ a`. Currently, however, this CMRA hides the ability to
  split the authoritative part into fractions.
*)

12
13
14
15
16
17
18
19
20
21
22
23
Definition frac_authR (A : cmraT) : cmraT :=
  authR (optionUR (prodR fracR A)).
Definition frac_authUR (A : cmraT) : ucmraT :=
  authUR (optionUR (prodR fracR A)).

Definition frac_auth_auth {A : cmraT} (x : A) : frac_authR A :=
   (Some (1%Qp,x)).
Definition frac_auth_frag {A : cmraT} (q : frac) (x : A) : frac_authR A :=
   (Some (q,x)).

Typeclasses Opaque frac_auth_auth frac_auth_frag.

24
25
Instance: Params (@frac_auth_auth) 1 := {}.
Instance: Params (@frac_auth_frag) 2 := {}.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Notation "●! a" := (frac_auth_auth a) (at level 10).
Notation "◯!{ q } a" := (frac_auth_frag q a) (at level 10, format "◯!{ q }  a").
Notation "◯! a" := (frac_auth_frag 1 a) (at level 10).

Section frac_auth.
  Context {A : cmraT}.
  Implicit Types a b : A.

  Global Instance frac_auth_auth_ne : NonExpansive (@frac_auth_auth A).
  Proof. solve_proper. Qed.
  Global Instance frac_auth_auth_proper : Proper (() ==> ()) (@frac_auth_auth A).
  Proof. solve_proper. Qed.
  Global Instance frac_auth_frag_ne q : NonExpansive (@frac_auth_frag A q).
  Proof. solve_proper. Qed.
  Global Instance frac_auth_frag_proper q : Proper (() ==> ()) (@frac_auth_frag A q).
  Proof. solve_proper. Qed.

44
  Global Instance frac_auth_auth_discrete a : Discrete a  Discrete (! a).
45
  Proof. intros; apply auth_auth_discrete; [apply Some_discrete|]; apply _. Qed.
46
  Global Instance frac_auth_frag_discrete q a : Discrete a  Discrete (!{q} a).
47
  Proof. intros; apply auth_frag_discrete, Some_discrete; apply _. Qed.
48
49

  Lemma frac_auth_validN n a : {n} a  {n} (! a  ! a).
50
  Proof. by rewrite auth_both_validN. Qed.
51
  Lemma frac_auth_valid a :  a   (! a  ! a).
52
  Proof. intros. by apply auth_both_valid_2. Qed.
53
54
55

  Lemma frac_auth_agreeN n a b : {n} (! a  ! b)  a {n} b.
  Proof.
56
    rewrite auth_both_validN /= => -[Hincl Hvalid].
57
58
59
60
61
62
63
64
65
66
    by move: Hincl=> /Some_includedN_exclusive /(_ Hvalid ) [??].
  Qed.
  Lemma frac_auth_agree a b :  (! a  ! b)  a  b.
  Proof.
    intros. apply equiv_dist=> n. by apply frac_auth_agreeN, cmra_valid_validN.
  Qed.
  Lemma frac_auth_agreeL `{!LeibnizEquiv A} a b :  (! a  ! b)  a = b.
  Proof. intros. by apply leibniz_equiv, frac_auth_agree. Qed.

  Lemma frac_auth_includedN n q a b : {n} (! a  !{q} b)  Some b {n} Some a.
67
  Proof. by rewrite auth_both_validN /= => -[/Some_pair_includedN [_ ?] _]. Qed.
68
  Lemma frac_auth_included `{CmraDiscrete A} q a b :
69
     (! a  !{q} b)  Some b  Some a.
70
  Proof. by rewrite auth_both_valid /= => -[/Some_pair_included [_ ?] _]. Qed.
71
  Lemma frac_auth_includedN_total `{CmraTotal A} n q a b :
72
73
    {n} (! a  !{q} b)  b {n} a.
  Proof. intros. by eapply Some_includedN_total, frac_auth_includedN. Qed.
74
  Lemma frac_auth_included_total `{CmraDiscrete A, CmraTotal A} q a b :
75
76
77
78
79
     (! a  !{q} b)  b  a.
  Proof. intros. by eapply Some_included_total, frac_auth_included. Qed.

  Lemma frac_auth_auth_validN n a : {n} (! a)  {n} a.
  Proof.
80
81
    rewrite auth_auth_frac_validN Some_validN. split.
    by intros [?[]]. intros. by split.
82
83
84
85
86
87
88
89
90
  Qed.
  Lemma frac_auth_auth_valid a :  (! a)   a.
  Proof. rewrite !cmra_valid_validN. by setoid_rewrite frac_auth_auth_validN. Qed.

  Lemma frac_auth_frag_validN n q a : {n} (!{q} a)  {n} q  {n} a.
  Proof. done. Qed.
  Lemma frac_auth_frag_valid q a :  (!{q} a)   q   a.
  Proof. done. Qed.

91
  Lemma frac_auth_frag_op q1 q2 a1 a2 : !{q1+q2} (a1  a2)  !{q1} a1  !{q2} a2.
92
93
  Proof. done. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
94
  Lemma frac_auth_frag_validN_op_1_l n q a b : {n} (!{1} a  !{q} b)  False.
95
  Proof. rewrite -frac_auth_frag_op frac_auth_frag_validN=> -[/exclusiveN_l []]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
96
  Lemma frac_auth_frag_valid_op_1_l q a b :  (!{1} a  !{q} b)  False.
97
  Proof. rewrite -frac_auth_frag_op frac_auth_frag_valid=> -[/exclusive_l []]. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
98

99
100
101
102
  Global Instance is_op_frac_auth (q q1 q2 : frac) (a a1 a2 : A) :
    IsOp q q1 q2  IsOp a a1 a2  IsOp' (!{q} a) (!{q1} a1) (!{q2} a2).
  Proof. by rewrite /IsOp' /IsOp=> /leibniz_equiv_iff -> ->. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
103
  Global Instance is_op_frac_auth_core_id (q q1 q2 : frac) (a  : A) :
104
    CoreId a  IsOp q q1 q2  IsOp' (!{q} a) (!{q1} a) (!{q2} a).
105
  Proof.
106
    rewrite /IsOp' /IsOp=> ? /leibniz_equiv_iff ->.
107
    by rewrite -frac_auth_frag_op -core_id_dup.
108
109
110
111
112
113
114
  Qed.

  Lemma frac_auth_update q a b a' b' :
    (a,b) ~l~> (a',b')  ! a  !{q} b ~~> ! a'  !{q} b'.
  Proof.
    intros. by apply auth_update, option_local_update, prod_local_update_2.
  Qed.
115
116
117
118
119

  Lemma frac_auth_update_1 a b a' :  a'  ! a  ! b ~~> ! a'  ! a'.
  Proof.
    intros. by apply auth_update, option_local_update, exclusive_local_update.
  Qed.
120
End frac_auth.