upred.v 50.7 KB
Newer Older
1
From algebra Require Export cmra.
2 3
Local Hint Extern 1 (_  _) => etrans; [eassumption|].
Local Hint Extern 1 (_  _) => etrans; [|eassumption].
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5
Local Hint Extern 10 (_  _) => omega.

Robbert Krebbers's avatar
Robbert Krebbers committed
6
Record uPred (M : cmraT) : Type := IProp {
Robbert Krebbers's avatar
Robbert Krebbers committed
7
  uPred_holds :> nat  M  Prop;
Robbert Krebbers's avatar
Robbert Krebbers committed
8 9
  uPred_ne n x1 x2 : uPred_holds n x1  x1 {n} x2  uPred_holds n x2;
  uPred_weaken  n1 n2 x1 x2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
10
    uPred_holds n1 x1  x1  x2  n2  n1  {n2} x2  uPred_holds n2 x2
Robbert Krebbers's avatar
Robbert Krebbers committed
11
}.
12
Arguments uPred_holds {_} _ _ _ : simpl never.
13 14
Global Opaque uPred_holds.
Local Transparent uPred_holds.
Robbert Krebbers's avatar
Robbert Krebbers committed
15 16
Add Printing Constructor uPred.
Instance: Params (@uPred_holds) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
17

18 19 20 21
Delimit Scope uPred_scope with I.
Bind Scope uPred_scope with uPred.
Arguments uPred_holds {_} _%I _ _.

22 23
Section cofe.
  Context {M : cmraT}.
24 25 26 27 28 29 30

  Inductive uPred_equiv' (P Q : uPred M) : Prop :=
    { uPred_in_equiv :  n x, {n} x  P n x  Q n x }.
  Instance uPred_equiv : Equiv (uPred M) := uPred_equiv'.
  Inductive uPred_dist' (n : nat) (P Q : uPred M) : Prop :=
    { uPred_in_dist :  n' x, n'  n  {n'} x  P n' x  Q n' x }.
  Instance uPred_dist : Dist (uPred M) := uPred_dist'.
31
  Program Instance uPred_compl : Compl (uPred M) := λ c,
32
    {| uPred_holds n x := c (S n) n x |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
33
  Next Obligation. by intros c n x y ??; simpl in *; apply uPred_ne with x. Qed.
34
  Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
35
    intros c n1 n2 x1 x2 ????; simpl in *.
36
    apply (chain_cauchy c n2 (S n1)); eauto using uPred_weaken.
37 38 39 40
  Qed.
  Definition uPred_cofe_mixin : CofeMixin (uPred M).
  Proof.
    split.
41 42 43
    - intros P Q; split.
      + by intros HPQ n; split=> i x ??; apply HPQ.
      + intros HPQ; split=> n x ?; apply HPQ with n; auto.
44
    - intros n; split.
45 46 47 48 49 50
      + by intros P; split=> x i.
      + by intros P Q HPQ; split=> x i ??; symmetry; apply HPQ.
      + intros P Q Q' HP HQ; split=> i x ??.
        by trans (Q i x);[apply HP|apply HQ].
    - intros n P Q HPQ; split=> i x ??; apply HPQ; auto.
    - intros n c; split=>i x ??; symmetry; apply (chain_cauchy c i (S n)); auto.
51 52 53 54 55
  Qed.
  Canonical Structure uPredC : cofeT := CofeT uPred_cofe_mixin.
End cofe.
Arguments uPredC : clear implicits.

56
Instance uPred_ne' {M} (P : uPred M) n : Proper (dist n ==> iff) (P n).
Robbert Krebbers's avatar
Robbert Krebbers committed
57
Proof. intros x1 x2 Hx; split; eauto using uPred_ne. Qed.
58 59 60 61
Instance uPred_proper {M} (P : uPred M) n : Proper (() ==> iff) (P n).
Proof. by intros x1 x2 Hx; apply uPred_ne', equiv_dist. Qed.

Lemma uPred_holds_ne {M} (P1 P2 : uPred M) n x :
62
  P1 {n} P2  {n} x  P1 n x  P2 n x.
63
Proof. intros HP ?; apply HP; auto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
64
Lemma uPred_weaken' {M} (P : uPred M) n1 n2 x1 x2 :
65
  x1  x2  n2  n1  {n2} x2  P n1 x1  P n2 x2.
66
Proof. eauto using uPred_weaken. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
67 68

(** functor *)
69 70 71 72
Program Definition uPred_map {M1 M2 : cmraT} (f : M2 -n> M1)
  `{!CMRAMonotone f} (P : uPred M1) :
  uPred M2 := {| uPred_holds n x := P n (f x) |}.
Next Obligation. by intros M1 M2 f ? P y1 y2 n ? Hy; rewrite /= -Hy. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
73
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
74
  naive_solver eauto using uPred_weaken, included_preserving, validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
Qed.
76
Instance uPred_map_ne {M1 M2 : cmraT} (f : M2 -n> M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
77
  `{!CMRAMonotone f} n : Proper (dist n ==> dist n) (uPred_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
78
Proof.
79 80
  intros x1 x2 Hx; split=> n' y ??.
  split; apply Hx; auto using validN_preserving.
Robbert Krebbers's avatar
Robbert Krebbers committed
81
Qed.
82
Lemma uPred_map_id {M : cmraT} (P : uPred M): uPred_map cid P  P.
83
Proof. by split=> n x ?. Qed.
84
Lemma uPred_map_compose {M1 M2 M3 : cmraT} (f : M1 -n> M2) (g : M2 -n> M3)
Robbert Krebbers's avatar
Robbert Krebbers committed
85
    `{!CMRAMonotone f, !CMRAMonotone g} (P : uPred M3):
86
  uPred_map (g  f) P  uPred_map f (uPred_map g P).
87
Proof. by split=> n x Hx. Qed.
88
Lemma uPred_map_ext {M1 M2 : cmraT} (f g : M1 -n> M2)
89 90 91
      `{!CMRAMonotone f} `{!CMRAMonotone g}:
  ( x, f x  g x) ->  x, uPred_map f x  uPred_map g x.
Proof. intros Hf P; split=> n x Hx /=; by rewrite /uPred_holds /= Hf. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
92
Definition uPredC_map {M1 M2 : cmraT} (f : M2 -n> M1) `{!CMRAMonotone f} :
Robbert Krebbers's avatar
Robbert Krebbers committed
93
  uPredC M1 -n> uPredC M2 := CofeMor (uPred_map f : uPredC M1  uPredC M2).
Robbert Krebbers's avatar
Robbert Krebbers committed
94
Lemma upredC_map_ne {M1 M2 : cmraT} (f g : M2 -n> M1)
Robbert Krebbers's avatar
Robbert Krebbers committed
95
    `{!CMRAMonotone f, !CMRAMonotone g} n :
96
  f {n} g  uPredC_map f {n} uPredC_map g.
Robbert Krebbers's avatar
Robbert Krebbers committed
97
Proof.
98
  by intros Hfg P; split=> n' y ??;
99
    rewrite /uPred_holds /= (dist_le _ _ _ _(Hfg y)); last lia.
Robbert Krebbers's avatar
Robbert Krebbers committed
100
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102

(** logical entailement *)
103 104
Inductive uPred_entails {M} (P Q : uPred M) : Prop :=
  { uPred_in_entails :  n x, {n} x  P n x  Q n x }.
105
Hint Extern 0 (uPred_entails _ _) => reflexivity.
106
Instance uPred_entails_rewrite_relation M : RewriteRelation (@uPred_entails M).
Robbert Krebbers's avatar
Robbert Krebbers committed
107 108

(** logical connectives *)
109
Program Definition uPred_const_def {M} (φ : Prop) : uPred M :=
110
  {| uPred_holds n x := φ |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
111
Solve Obligations with done.
112 113 114 115 116
Definition uPred_const_aux : { x | x = @uPred_const_def }. by eexists. Qed.
Definition uPred_const {M} := proj1_sig uPred_const_aux M.
Definition uPred_const_eq :
  @uPred_const = @uPred_const_def := proj2_sig uPred_const_aux.

117
Instance uPred_inhabited M : Inhabited (uPred M) := populate (uPred_const True).
Robbert Krebbers's avatar
Robbert Krebbers committed
118

119
Program Definition uPred_and_def {M} (P Q : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
120 121
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
122 123 124 125 126
Definition uPred_and_aux : { x | x = @uPred_and_def }. by eexists. Qed.
Definition uPred_and {M} := proj1_sig uPred_and_aux M.
Definition uPred_and_eq: @uPred_and = @uPred_and_def := proj2_sig uPred_and_aux.

Program Definition uPred_or_def {M} (P Q : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
127 128
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
129 130 131 132 133
Definition uPred_or_aux : { x | x = @uPred_or_def }. by eexists. Qed.
Definition uPred_or {M} := proj1_sig uPred_or_aux M.
Definition uPred_or_eq: @uPred_or = @uPred_or_def := proj2_sig uPred_or_aux.

Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
134
  {| uPred_holds n x :=  n' x',
Robbert Krebbers's avatar
Robbert Krebbers committed
135
       x  x'  n'  n  {n'} x'  P n' x'  Q n' x' |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
136
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
137 138
  intros M P Q n1 x1' x1 HPQ Hx1 n2 x2 ????.
  destruct (cmra_included_dist_l n1 x1 x2 x1') as (x2'&?&Hx2); auto.
139
  assert (x2' {n2} x2) as Hx2' by (by apply dist_le with n1).
140
  assert ({n2} x2') by (by rewrite Hx2'); rewrite -Hx2'.
Robbert Krebbers's avatar
Robbert Krebbers committed
141
  eauto using uPred_weaken, uPred_ne.
Robbert Krebbers's avatar
Robbert Krebbers committed
142
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
143
Next Obligation. intros M P Q [|n] x1 x2; auto with lia. Qed.
144 145 146 147
Definition uPred_impl_aux : { x | x = @uPred_impl_def }. by eexists. Qed.
Definition uPred_impl {M} := proj1_sig uPred_impl_aux M.
Definition uPred_impl_eq :
  @uPred_impl = @uPred_impl_def := proj2_sig uPred_impl_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
148

149
Program Definition uPred_forall_def {M A} (Ψ : A  uPred M) : uPred M :=
150
  {| uPred_holds n x :=  a, Ψ a n x |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
151
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
152 153 154 155 156 157
Definition uPred_forall_aux : { x | x = @uPred_forall_def }. by eexists. Qed.
Definition uPred_forall {M A} := proj1_sig uPred_forall_aux M A.
Definition uPred_forall_eq :
  @uPred_forall = @uPred_forall_def := proj2_sig uPred_forall_aux.

Program Definition uPred_exist_def {M A} (Ψ : A  uPred M) : uPred M :=
158
  {| uPred_holds n x :=  a, Ψ a n x |}.
159
Solve Obligations with naive_solver eauto 2 using uPred_ne, uPred_weaken.
160 161 162
Definition uPred_exist_aux : { x | x = @uPred_exist_def }. by eexists. Qed.
Definition uPred_exist {M A} := proj1_sig uPred_exist_aux M A.
Definition uPred_exist_eq: @uPred_exist = @uPred_exist_def := proj2_sig uPred_exist_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
163

164
Program Definition uPred_eq_def {M} {A : cofeT} (a1 a2 : A) : uPred M :=
165
  {| uPred_holds n x := a1 {n} a2 |}.
166
Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)).
167 168 169
Definition uPred_eq_aux : { x | x = @uPred_eq_def }. by eexists. Qed.
Definition uPred_eq {M A} := proj1_sig uPred_eq_aux M A.
Definition uPred_eq_eq: @uPred_eq = @uPred_eq_def := proj2_sig uPred_eq_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
170

171
Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M :=
172
  {| uPred_holds n x :=  x1 x2, x {n} x1  x2  P n x1  Q n x2 |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
174
  by intros M P Q n x y (x1&x2&?&?&?) Hxy; exists x1, x2; rewrite -Hxy.
Robbert Krebbers's avatar
Robbert Krebbers committed
175 176
Qed.
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
177
  intros M P Q n1 n2 x y (x1&x2&Hx&?&?) Hxy ??.
178
  assert ( x2', y {n2} x1  x2'  x2  x2') as (x2'&Hy&?).
179
  { destruct Hxy as [z Hy]; exists (x2  z); split; eauto using cmra_included_l.
180
    apply dist_le with n1; auto. by rewrite (assoc op) -Hx Hy. }
181
  clear Hxy; cofe_subst y; exists x1, x2'; split_and?; [done| |].
Robbert Krebbers's avatar
Robbert Krebbers committed
182 183
  - apply uPred_weaken with n1 x1; eauto using cmra_validN_op_l.
  - apply uPred_weaken with n1 x2; eauto using cmra_validN_op_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
184
Qed.
185 186 187
Definition uPred_sep_aux : { x | x = @uPred_sep_def }. by eexists. Qed.
Definition uPred_sep {M} := proj1_sig uPred_sep_aux M.
Definition uPred_sep_eq: @uPred_sep = @uPred_sep_def := proj2_sig uPred_sep_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
188

189
Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
190
  {| uPred_holds n x :=  n' x',
Robbert Krebbers's avatar
Robbert Krebbers committed
191
       n'  n  {n'} (x  x')  P n' x'  Q n' (x  x') |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
192
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
193
  intros M P Q n1 x1 x2 HPQ Hx n2 x3 ???; simpl in *.
Robbert Krebbers's avatar
Robbert Krebbers committed
194
  rewrite -(dist_le _ _ _ _ Hx) //; apply HPQ; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
195
  by rewrite (dist_le _ _ _ _ Hx).
Robbert Krebbers's avatar
Robbert Krebbers committed
196 197
Qed.
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
198 199
  intros M P Q n1 n2 x1 x2 HPQ ??? n3 x3 ???; simpl in *.
  apply uPred_weaken with n3 (x1  x3);
200
    eauto using cmra_validN_included, cmra_preserving_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
201
Qed.
202 203 204 205
Definition uPred_wand_aux : { x | x = @uPred_wand_def }. by eexists. Qed.
Definition uPred_wand {M} := proj1_sig uPred_wand_aux M.
Definition uPred_wand_eq :
  @uPred_wand = @uPred_wand_def := proj2_sig uPred_wand_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
206

207
Program Definition uPred_always_def {M} (P : uPred M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
208
  {| uPred_holds n x := P n (unit x) |}.
209
Next Obligation. by intros M P x1 x2 n ? Hx; rewrite /= -Hx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
211
  intros M P n1 n2 x1 x2 ????; eapply uPred_weaken with n1 (unit x1);
212
    eauto using cmra_unit_preserving, cmra_unit_validN.
Robbert Krebbers's avatar
Robbert Krebbers committed
213
Qed.
214 215 216 217 218 219
Definition uPred_always_aux : { x | x = @uPred_always_def }. by eexists. Qed.
Definition uPred_always {M} := proj1_sig uPred_always_aux M.
Definition uPred_always_eq :
  @uPred_always = @uPred_always_def := proj2_sig uPred_always_aux.

Program Definition uPred_later_def {M} (P : uPred M) : uPred M :=
220 221 222 223 224
  {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation. intros M P [|n] ??; eauto using uPred_ne,(dist_le (A:=M)). Qed.
Next Obligation.
  intros M P [|n1] [|n2] x1 x2; eauto using uPred_weaken,cmra_validN_S; try lia.
Qed.
225 226 227 228
Definition uPred_later_aux : { x | x = @uPred_later_def }. by eexists. Qed.
Definition uPred_later {M} := proj1_sig uPred_later_aux M.
Definition uPred_later_eq :
  @uPred_later = @uPred_later_def := proj2_sig uPred_later_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
229

230
Program Definition uPred_ownM_def {M : cmraT} (a : M) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
231
  {| uPred_holds n x := a {n} x |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
232
Next Obligation. by intros M a n x1 x2 [a' ?] Hx; exists a'; rewrite -Hx. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
233
Next Obligation.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
  intros M a n1 n2 x1 x [a' Hx1] [x2 Hx] ??.
235
  exists (a'  x2). by rewrite (assoc op) -(dist_le _ _ _ _ Hx1) // Hx.
Robbert Krebbers's avatar
Robbert Krebbers committed
236
Qed.
237 238 239 240 241 242
Definition uPred_ownM_aux : { x | x = @uPred_ownM_def }. by eexists. Qed.
Definition uPred_ownM {M} := proj1_sig uPred_ownM_aux M.
Definition uPred_ownM_eq :
  @uPred_ownM = @uPred_ownM_def := proj2_sig uPred_ownM_aux.

Program Definition uPred_valid_def {M A : cmraT} (a : A) : uPred M :=
Robbert Krebbers's avatar
Robbert Krebbers committed
243
  {| uPred_holds n x := {n} a |}.
244
Solve Obligations with naive_solver eauto 2 using cmra_validN_le.
245 246 247 248
Definition uPred_valid_aux : { x | x = @uPred_valid_def }. by eexists. Qed.
Definition uPred_valid {M A} := proj1_sig uPred_valid_aux M A.
Definition uPred_valid_eq :
  @uPred_valid = @uPred_valid_def := proj2_sig uPred_valid_aux.
Robbert Krebbers's avatar
Robbert Krebbers committed
249

250 251
Notation "P ⊑ Q" := (uPred_entails P%I Q%I) (at level 70) : C_scope.
Notation "(⊑)" := uPred_entails (only parsing) : C_scope.
252 253
Notation "■ φ" := (uPred_const φ%C%type)
  (at level 20, right associativity) : uPred_scope.
Ralf Jung's avatar
Ralf Jung committed
254
Notation "x = y" := (uPred_const (x%C%type = y%C%type)) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
255 256 257
Notation "'False'" := (uPred_const False) : uPred_scope.
Notation "'True'" := (uPred_const True) : uPred_scope.
Infix "∧" := uPred_and : uPred_scope.
258
Notation "(∧)" := uPred_and (only parsing) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
259
Infix "∨" := uPred_or : uPred_scope.
260
Notation "(∨)" := uPred_or (only parsing) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
261 262
Infix "→" := uPred_impl : uPred_scope.
Infix "★" := uPred_sep (at level 80, right associativity) : uPred_scope.
263
Notation "(★)" := uPred_sep (only parsing) : uPred_scope.
264
Notation "P -★ Q" := (uPred_wand P Q)
265
  (at level 199, Q at level 200, right associativity) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
266
Notation "∀ x .. y , P" :=
267
  (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)%I) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
268
Notation "∃ x .. y , P" :=
269
  (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)%I) : uPred_scope.
270 271
Notation "□ P" := (uPred_always P)
  (at level 20, right associativity) : uPred_scope.
272 273
Notation "▷ P" := (uPred_later P)
  (at level 20, right associativity) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
274
Infix "≡" := uPred_eq : uPred_scope.
275
Notation "✓ x" := (uPred_valid x) (at level 20) : uPred_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
276

277 278 279
Definition uPred_iff {M} (P Q : uPred M) : uPred M := ((P  Q)  (Q  P))%I.
Infix "↔" := uPred_iff : uPred_scope.

280
Class TimelessP {M} (P : uPred M) := timelessP :  P  (P   False).
281
Arguments timelessP {_} _ {_}.
282
Class AlwaysStable {M} (P : uPred M) := always_stable : P   P.
283
Arguments always_stable {_} _ {_}.
Robbert Krebbers's avatar
Robbert Krebbers committed
284

285 286 287 288 289 290 291 292
Module uPred.
Definition unseal :=
  (uPred_const_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq,
  uPred_exist_eq, uPred_eq_eq, uPred_sep_eq, uPred_wand_eq, uPred_always_eq,
  uPred_later_eq, uPred_ownM_eq, uPred_valid_eq).
Ltac unseal := rewrite !unseal.

Section uPred_logic.
293
Context {M : cmraT}.
294
Implicit Types φ : Prop.
Robbert Krebbers's avatar
Robbert Krebbers committed
295
Implicit Types P Q : uPred M.
296
Implicit Types A : Type.
297
Notation "P ⊑ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
298
Arguments uPred_holds {_} !_ _ _ /.
299
Hint Immediate uPred_in_entails.
Robbert Krebbers's avatar
Robbert Krebbers committed
300

301
Global Instance: PreOrder (@uPred_entails M).
302 303 304 305 306
Proof.
  split.
  * by intros P; split=> x i.
  * by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP.
Qed.
307
Global Instance: AntiSymm () (@uPred_entails M).
308
Proof. intros P Q HPQ HQP; split=> x n; by split; [apply HPQ|apply HQP]. Qed.
309
Lemma equiv_spec P Q : P  Q  P  Q  Q  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
Proof.
311
  split; [|by intros [??]; apply (anti_symm ())].
312
  intros HPQ; split; split=> x i; apply HPQ.
Robbert Krebbers's avatar
Robbert Krebbers committed
313
Qed.
314 315 316 317
Lemma equiv_entails P Q : P  Q  P  Q.
Proof. apply equiv_spec. Qed.
Lemma equiv_entails_sym P Q : Q  P  P  Q.
Proof. apply equiv_spec. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
Global Instance entails_proper :
319
  Proper (() ==> () ==> iff) (() : relation (uPred M)).
Robbert Krebbers's avatar
Robbert Krebbers committed
320
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
321
  move => P1 P2 /equiv_spec [HP1 HP2] Q1 Q2 /equiv_spec [HQ1 HQ2]; split; intros.
322 323
  - by trans P1; [|trans Q1].
  - by trans P2; [|trans Q2].
Robbert Krebbers's avatar
Robbert Krebbers committed
324
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
325

326
(** Non-expansiveness and setoid morphisms *)
Robbert Krebbers's avatar
Robbert Krebbers committed
327
Global Instance const_proper : Proper (iff ==> ()) (@uPred_const M).
328
Proof. intros φ1 φ2 Hφ. by unseal; split=> -[|n] ?; try apply Hφ. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
329
Global Instance and_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_and M).
Robbert Krebbers's avatar
Robbert Krebbers committed
330
Proof.
331
  intros P P' HP Q Q' HQ; unseal; split=> x n' ??.
332
  split; (intros [??]; split; [by apply HP|by apply HQ]).
Robbert Krebbers's avatar
Robbert Krebbers committed
333
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
334
Global Instance and_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
335
  Proper (() ==> () ==> ()) (@uPred_and M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
336
Global Instance or_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_or M).
Robbert Krebbers's avatar
Robbert Krebbers committed
337
Proof.
338
  intros P P' HP Q Q' HQ; split=> x n' ??.
339
  unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]).
Robbert Krebbers's avatar
Robbert Krebbers committed
340
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
341
Global Instance or_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
342
  Proper (() ==> () ==> ()) (@uPred_or M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
343
Global Instance impl_ne n :
Robbert Krebbers's avatar
Robbert Krebbers committed
344
  Proper (dist n ==> dist n ==> dist n) (@uPred_impl M).
Robbert Krebbers's avatar
Robbert Krebbers committed
345
Proof.
346
  intros P P' HP Q Q' HQ; split=> x n' ??.
347
  unseal; split; intros HPQ x' n'' ????; apply HQ, HPQ, HP; auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
348
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
349
Global Instance impl_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
350
  Proper (() ==> () ==> ()) (@uPred_impl M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
351
Global Instance sep_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_sep M).
Robbert Krebbers's avatar
Robbert Krebbers committed
352
Proof.
353
  intros P P' HP Q Q' HQ; split=> n' x ??.
354
  unseal; split; intros (x1&x2&?&?&?); cofe_subst x;
355
    exists x1, x2; split_and!; try (apply HP || apply HQ);
356
    eauto using cmra_validN_op_l, cmra_validN_op_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
357
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
358
Global Instance sep_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
359
  Proper (() ==> () ==> ()) (@uPred_sep M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
360
Global Instance wand_ne n :
Robbert Krebbers's avatar
Robbert Krebbers committed
361
  Proper (dist n ==> dist n ==> dist n) (@uPred_wand M).
Robbert Krebbers's avatar
Robbert Krebbers committed
362
Proof.
363
  intros P P' HP Q Q' HQ; split=> n' x ??; unseal; split; intros HPQ x' n'' ???;
364
    apply HQ, HPQ, HP; eauto using cmra_validN_op_r.
Robbert Krebbers's avatar
Robbert Krebbers committed
365
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
366
Global Instance wand_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
367
  Proper (() ==> () ==> ()) (@uPred_wand M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
368
Global Instance eq_ne (A : cofeT) n :
Robbert Krebbers's avatar
Robbert Krebbers committed
369
  Proper (dist n ==> dist n ==> dist n) (@uPred_eq M A).
Robbert Krebbers's avatar
Robbert Krebbers committed
370
Proof.
371
  intros x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *.
372 373
  * by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto.
  * by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
375
Global Instance eq_proper (A : cofeT) :
Robbert Krebbers's avatar
Robbert Krebbers committed
376
  Proper (() ==> () ==> ()) (@uPred_eq M A) := ne_proper_2 _.
377
Global Instance forall_ne A n :
Robbert Krebbers's avatar
Robbert Krebbers committed
378
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A).
379 380 381
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
382
Global Instance forall_proper A :
Robbert Krebbers's avatar
Robbert Krebbers committed
383
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
384 385 386
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.
387
Global Instance exist_ne A n :
Robbert Krebbers's avatar
Robbert Krebbers committed
388
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A).
389
Proof.
390 391
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ??; split; intros [a ?]; exists a; by apply HΨ.
392
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
393
Global Instance exist_proper A :
Robbert Krebbers's avatar
Robbert Krebbers committed
394
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
395
Proof.
396 397
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ?; split; intros [a ?]; exists a; by apply HΨ.
398
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
399
Global Instance later_contractive : Contractive (@uPred_later M).
Robbert Krebbers's avatar
Robbert Krebbers committed
400
Proof.
401
  intros n P Q HPQ; unseal; split=> -[|n'] x ??; simpl; [done|].
402
  apply (HPQ n'); eauto using cmra_validN_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
403
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
404
Global Instance later_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
405
  Proper (() ==> ()) (@uPred_later M) := ne_proper _.
406 407
Global Instance always_ne n : Proper (dist n ==> dist n) (@uPred_always M).
Proof.
408 409
  intros P1 P2 HP.
  unseal; split=> n' x; split; apply HP; eauto using cmra_unit_validN.
410
Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
411
Global Instance always_proper :
Robbert Krebbers's avatar
Robbert Krebbers committed
412
  Proper (() ==> ()) (@uPred_always M) := ne_proper _.
413
Global Instance ownM_ne n : Proper (dist n ==> dist n) (@uPred_ownM M).
414
Proof.
415 416
  intros a b Ha.
  unseal; split=> n' x ? /=. by rewrite (dist_le _ _ _ _ Ha); last lia.
417
Qed.
418 419
Global Instance ownM_proper: Proper (() ==> ()) (@uPred_ownM M) := ne_proper _.
Global Instance valid_ne {A : cmraT} n :
420 421
Proper (dist n ==> dist n) (@uPred_valid M A).
Proof.
422 423
  intros a b Ha; unseal; split=> n' x ? /=.
  by rewrite (dist_le _ _ _ _ Ha); last lia.
424
Qed.
425 426
Global Instance valid_proper {A : cmraT} :
  Proper (() ==> ()) (@uPred_valid M A) := ne_proper _.
Robbert Krebbers's avatar
Robbert Krebbers committed
427
Global Instance iff_ne n : Proper (dist n ==> dist n ==> dist n) (@uPred_iff M).
428
Proof. unfold uPred_iff; solve_proper. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
Global Instance iff_proper :
430
  Proper (() ==> () ==> ()) (@uPred_iff M) := ne_proper_2 _.
Robbert Krebbers's avatar
Robbert Krebbers committed
431 432

(** Introduction and elimination rules *)
433
Lemma const_intro φ P : φ  P   φ.
434
Proof. by intros ?; unseal; split. Qed.
435
Lemma const_elim φ Q R : Q   φ  (φ  Q  R)  Q  R.
436 437 438
Proof.
  unseal; intros HQP HQR; split=> n x ??; apply HQR; first eapply HQP; eauto.
Qed.
439
Lemma False_elim P : False  P.
440
Proof. by unseal; split=> n x ?. Qed.
441
Lemma and_elim_l P Q : (P  Q)  P.
442
Proof. by unseal; split=> n x ? [??]. Qed.
443
Lemma and_elim_r P Q : (P  Q)  Q.
444
Proof. by unseal; split=> n x ? [??]. Qed.
445
Lemma and_intro P Q R : P  Q  P  R  P  (Q  R).
446
Proof. intros HQ HR; unseal; split=> n x ??; by split; [apply HQ|apply HR]. Qed.
447
Lemma or_intro_l P Q : P  (P  Q).
448
Proof. unseal; split=> n x ??; left; auto. Qed.
449
Lemma or_intro_r P Q : Q  (P  Q).
450
Proof. unseal; split=> n x ??; right; auto. Qed.
451
Lemma or_elim P Q R : P  R  Q  R  (P  Q)  R.
452
Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed.
453
Lemma impl_intro_r P Q R : (P  Q)  R  P  (Q  R).
Robbert Krebbers's avatar
Robbert Krebbers committed
454
Proof.
455
  unseal; intros HQ; split=> n x ?? n' x' ????.
456
  apply HQ; naive_solver eauto using uPred_weaken.
Robbert Krebbers's avatar
Robbert Krebbers committed
457
Qed.
458
Lemma impl_elim P Q R : P  (Q  R)  P  Q  P  R.
459
Proof. by unseal; intros HP HP'; split=> n x ??; apply HP with n x, HP'. Qed.
460
Lemma forall_intro {A} P (Ψ : A  uPred M): ( a, P  Ψ a)  P  ( a, Ψ a).
461
Proof. unseal; intros HPΨ; split=> n x ?? a; by apply HPΨ. Qed.
462
Lemma forall_elim {A} {Ψ : A  uPred M} a : ( a, Ψ a)  Ψ a.
463
Proof. unseal; split=> n x ? HP; apply HP. Qed.
464
Lemma exist_intro {A} {Ψ : A  uPred M} a : Ψ a  ( a, Ψ a).
465
Proof. unseal; split=> n x ??; by exists a. Qed.
466
Lemma exist_elim {A} (Φ : A  uPred M) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
467
Proof. unseal; intros HΦΨ; split=> n x ? [a ?]; by apply HΦΨ with a. Qed.
468
Lemma eq_refl {A : cofeT} (a : A) P : P  (a  a).
469
Proof. unseal; by split=> n x ??; simpl. Qed.
470 471
Lemma eq_rewrite {A : cofeT} a b (Ψ : A  uPred M) P
  `{HΨ :  n, Proper (dist n ==> dist n) Ψ} : P  (a  b)  P  Ψ a  P  Ψ b.
472
Proof.
473
  unseal; intros Hab Ha; split=> n x ??.
474
  apply HΨ with n a; auto. by symmetry; apply Hab with x. by apply Ha.
475
Qed.
476
Lemma eq_equiv `{Empty M, !CMRAIdentity M} {A : cofeT} (a b : A) :
477
  True  (a  b)  a  b.
478
Proof.
479
  unseal=> Hab; apply equiv_dist; intros n; apply Hab with ; last done.
480
  apply cmra_valid_validN, cmra_empty_valid.
481
Qed.
482
Lemma iff_equiv P Q : True  (P  Q)  P  Q.
483 484 485 486
Proof.
  rewrite /uPred_iff; unseal=> HPQ.
  split=> n x ?; split; intros; by apply HPQ with n x.
Qed.
487 488

(* Derived logical stuff *)
Robbert Krebbers's avatar
Robbert Krebbers committed
489 490
Lemma True_intro P : P  True.
Proof. by apply const_intro. Qed.
491
Lemma and_elim_l' P Q R : P  R  (P  Q)  R.
492
Proof. by rewrite and_elim_l. Qed.
493
Lemma and_elim_r' P Q R : Q  R  (P  Q)  R.
494
Proof. by rewrite and_elim_r. Qed.
495
Lemma or_intro_l' P Q R : P  Q  P  (Q  R).
496
Proof. intros ->; apply or_intro_l. Qed.
497
Lemma or_intro_r' P Q R : P  R  P  (Q  R).
498
Proof. intros ->; apply or_intro_r. Qed.
499
Lemma exist_intro' {A} P (Ψ : A  uPred M) a : P  Ψ a  P  ( a, Ψ a).
500
Proof. intros ->; apply exist_intro. Qed.
Ralf Jung's avatar
Ralf Jung committed
501
Lemma forall_elim' {A} P (Ψ : A  uPred M) : P  ( a, Ψ a)  ( a, P  Ψ a).
502
Proof. move=> HP a. by rewrite HP forall_elim. Qed.
503

504
Hint Resolve or_elim or_intro_l' or_intro_r'.
Robbert Krebbers's avatar
Robbert Krebbers committed
505 506
Hint Resolve and_intro and_elim_l' and_elim_r'.
Hint Immediate True_intro False_elim.
507

508 509
Lemma impl_intro_l P Q R : (Q  P)  R  P  (Q  R).
Proof. intros HR; apply impl_intro_r; rewrite -HR; auto. Qed.
510 511 512 513 514 515 516 517
Lemma impl_elim_l P Q : ((P  Q)  P)  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_r P Q : (P  (P  Q))  Q.
Proof. apply impl_elim with P; auto. Qed.
Lemma impl_elim_l' P Q R : P  (Q  R)  (P  Q)  R.
Proof. intros; apply impl_elim with Q; auto. Qed.
Lemma impl_elim_r' P Q R : Q  (P  R)  (P  Q)  R.
Proof. intros; apply impl_elim with P; auto. Qed.
518
Lemma impl_entails P Q : True  (P  Q)  P  Q.
519
Proof. intros HPQ; apply impl_elim with P; rewrite -?HPQ; auto. Qed.
520
Lemma entails_impl P Q : (P  Q)  True  (P  Q).
521
Proof. auto using impl_intro_l. Qed.
522

523 524
Lemma const_mono φ1 φ2 : (φ1  φ2)   φ1   φ2.
Proof. intros; apply const_elim with φ1; eauto using const_intro. Qed.
525
Lemma and_mono P P' Q Q' : P  Q  P'  Q'  (P  P')  (Q  Q').
526
Proof. auto. Qed.
527 528 529 530
Lemma and_mono_l P P' Q : P  Q  (P  P')  (Q  P').
Proof. by intros; apply and_mono. Qed.
Lemma and_mono_r P P' Q' : P'  Q'  (P  P')  (P  Q').
Proof. by apply and_mono. Qed.
531
Lemma or_mono P P' Q Q' : P  Q  P'  Q'  (P  P')  (Q  Q').
532
Proof. auto. Qed.
533 534 535 536
Lemma or_mono_l P P' Q : P  Q  (P  P')  (Q  P').
Proof. by intros; apply or_mono. Qed.
Lemma or_mono_r P P' Q' : P'  Q'  (P  P')  (P  Q').
Proof. by apply or_mono. Qed.
537
Lemma impl_mono P P' Q Q' : Q  P  P'  Q'  (P  P')  (Q  Q').
538
Proof.
539
  intros HP HQ'; apply i