cancelable_invariants.v 2.41 KB
Newer Older
1
From iris.base_logic.lib Require Export invariants fractional.
Robbert Krebbers's avatar
Robbert Krebbers committed
2
From iris.algebra Require Export frac.
3
From iris.proofmode Require Import tactics.
Robbert Krebbers's avatar
Robbert Krebbers committed
4 5 6 7 8
Import uPred.

Class cinvG Σ := cinv_inG :> inG Σ fracR.

Section defs.
9
  Context `{invG Σ, cinvG Σ}.
Robbert Krebbers's avatar
Robbert Krebbers committed
10 11 12 13 14 15 16

  Definition cinv_own (γ : gname) (p : frac) : iProp Σ := own γ p.

  Definition cinv (N : namespace) (γ : gname) (P : iProp Σ) : iProp Σ :=
    inv N (P  cinv_own γ 1%Qp)%I.
End defs.

17
Instance: Params (@cinv) 5.
Robbert Krebbers's avatar
Robbert Krebbers committed
18 19 20
Typeclasses Opaque cinv_own cinv.

Section proofs.
21
  Context `{invG Σ, cinvG Σ}.
Robbert Krebbers's avatar
Robbert Krebbers committed
22 23 24 25 26 27 28 29 30 31 32 33

  Global Instance cinv_own_timeless γ p : TimelessP (cinv_own γ p).
  Proof. rewrite /cinv_own; apply _. Qed.

  Global Instance cinv_ne N γ n : Proper (dist n ==> dist n) (cinv N γ).
  Proof. solve_proper. Qed.
  Global Instance cinv_proper N γ : Proper (() ==> ()) (cinv N γ).
  Proof. apply (ne_proper _). Qed.

  Global Instance cinv_persistent N γ P : PersistentP (cinv N γ P).
  Proof. rewrite /cinv; apply _. Qed.

34 35 36 37 38
  Global Instance cinv_own_fractionnal γ : Fractional (cinv_own γ).
  Proof. intros ??. by rewrite -own_op. Qed.
  Global Instance cinv_own_as_fractionnal γ q :
    AsFractional (cinv_own γ q) (cinv_own γ) q.
  Proof. done. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
39

40 41
  Lemma cinv_own_valid γ q1 q2 : cinv_own γ q1 - cinv_own γ q2 -  (q1 + q2)%Qp.
  Proof. apply (own_valid_2 γ q1 q2). Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
42

43 44 45 46 47
  Lemma cinv_own_1_l γ q : cinv_own γ 1 - cinv_own γ q - False.
  Proof.
    iIntros "H1 H2".
    iDestruct (cinv_own_valid with "H1 H2") as %[]%(exclusive_l 1%Qp).
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
48

49
  Lemma cinv_alloc E N P :  P ={E}=  γ, cinv N γ P  cinv_own γ 1.
Robbert Krebbers's avatar
Robbert Krebbers committed
50 51
  Proof.
    rewrite /cinv /cinv_own. iIntros "HP".
52 53
    iMod (own_alloc 1%Qp) as (γ) "H1"; first done.
    iMod (inv_alloc N _ (P  own γ 1%Qp)%I with "[HP]"); eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
54 55
  Qed.

56
  Lemma cinv_cancel E N γ P : N  E  cinv N γ P - cinv_own γ 1 ={E}=  P.
Robbert Krebbers's avatar
Robbert Krebbers committed
57 58 59
  Proof.
    rewrite /cinv. iIntros (?) "#Hinv Hγ".
    iInv N as "[$|>Hγ']" "Hclose"; first iApply "Hclose"; eauto.
60
    iDestruct (cinv_own_1_l with "Hγ Hγ'") as %[].
Robbert Krebbers's avatar
Robbert Krebbers committed
61 62 63
  Qed.

  Lemma cinv_open E N γ p P :
64
    N  E 
65
    cinv N γ P - cinv_own γ p ={E,E∖↑N}=  P  cinv_own γ p  ( P ={E∖↑N,E}= True).
Robbert Krebbers's avatar
Robbert Krebbers committed
66 67
  Proof.
    rewrite /cinv. iIntros (?) "#Hinv Hγ".
68
    iInv N as "[$ | >Hγ']" "Hclose".
69
    - iIntros "!> {$Hγ} HP". iApply "Hclose"; eauto.
70
    - iDestruct (cinv_own_1_l with "Hγ' Hγ") as %[].
Robbert Krebbers's avatar
Robbert Krebbers committed
71 72
  Qed.
End proofs.