big_op.v 73 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Export big_op.
2
From iris.bi Require Import derived_laws_sbi plainly.
Robbert Krebbers's avatar
Robbert Krebbers committed
3
From stdpp Require Import countable fin_sets functions.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5
Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi.
6

Dan Frumin's avatar
Dan Frumin committed
7
(** Notations for unary variants *)
Ralf Jung's avatar
Ralf Jung committed
8 9 10 11 12 13 14 15 16 17 18 19
Notation "'[∗' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_sep (λ k x, P) l) : bi_scope.
Notation "'[∗' 'list]' x ∈ l , P" :=
  (big_opL bi_sep (λ _ x, P) l) : bi_scope.
Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps) : bi_scope.

Notation "'[∧' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_and (λ k x, P) l) : bi_scope.
Notation "'[∧' 'list]' x ∈ l , P" :=
  (big_opL bi_and (λ _ x, P) l) : bi_scope.
Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps) : bi_scope.

20 21 22 23 24 25
Notation "'[∨' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_or (λ k x, P) l) : bi_scope.
Notation "'[∨' 'list]' x ∈ l , P" :=
  (big_opL bi_or (λ _ x, P) l) : bi_scope.
Notation "'[∨]' Ps" := (big_opL bi_or (λ _ x, x) Ps) : bi_scope.

Ralf Jung's avatar
Ralf Jung committed
26 27 28 29 30 31
Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P) m) : bi_scope.
Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P) m) : bi_scope.

Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P) X) : bi_scope.

Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) : bi_scope.
32

Dan Frumin's avatar
Dan Frumin committed
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
(** Definitions and notations for binary variants *)
(** A version of the separating big operator that ranges over two lists. This
version also ensures that both lists have the same length. Although this version
can be defined in terms of the unary using a [zip] (see [big_sepL2_alt]), we do
not define it that way to get better computational behavior (for [simpl]). *)
Fixpoint big_sepL2 {PROP : bi} {A B}
    (Φ : nat  A  B  PROP) (l1 : list A) (l2 : list B) : PROP :=
  match l1, l2 with
  | [], [] => emp
  | x1 :: l1, x2 :: l2 => Φ 0 x1 x2  big_sepL2 (λ n, Φ (S n)) l1 l2
  | _, _ => False
  end%I.
Instance: Params (@big_sepL2) 3 := {}.
Arguments big_sepL2 {PROP A B} _ !_ !_ /.
Typeclasses Opaque big_sepL2.
Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P" :=
  (big_sepL2 (λ k x1 x2, P) l1 l2) : bi_scope.
Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P" :=
  (big_sepL2 (λ _ x1 x2, P) l1 l2) : bi_scope.

Definition big_sepM2 {PROP : bi} `{Countable K} {A B}
    (Φ : K  A  B  PROP) (m1 : gmap K A) (m2 : gmap K B) : PROP :=
  (  k, is_Some (m1 !! k)  is_Some (m2 !! k)  
   [ map] k  xy  map_zip m1 m2, Φ k xy.1 xy.2)%I.
Instance: Params (@big_sepM2) 6 := {}.
Typeclasses Opaque big_sepM2.
Notation "'[∗' 'map]' k ↦ x1 ; x2 ∈ m1 ; m2 , P" :=
  (big_sepM2 (λ k x1 x2, P) m1 m2) : bi_scope.
Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" :=
  (big_sepM2 (λ _ x1 x2, P) m1 m2) : bi_scope.

64
(** * Properties *)
Robbert Krebbers's avatar
Robbert Krebbers committed
65 66
Section bi_big_op.
Context {PROP : bi}.
67
Implicit Types P Q : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
68
Implicit Types Ps Qs : list PROP.
69 70
Implicit Types A : Type.

71
(** ** Big ops over lists *)
72
Section sep_list.
73 74
  Context {A : Type}.
  Implicit Types l : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
75
  Implicit Types Φ Ψ : nat  A  PROP.
76

Robbert Krebbers's avatar
Robbert Krebbers committed
77
  Lemma big_sepL_nil Φ : ([ list] ky  nil, Φ k y)  emp.
78
  Proof. done. Qed.
79
  Lemma big_sepL_nil' `{BiAffine PROP} P Φ : P  [ list] ky  nil, Φ k y.
Robbert Krebbers's avatar
Robbert Krebbers committed
80
  Proof. apply (affine _). Qed.
81
  Lemma big_sepL_cons Φ x l :
82
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
83
  Proof. by rewrite big_opL_cons. Qed.
84
  Lemma big_sepL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
85 86
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_sepL_app Φ l1 l2 :
87 88
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
89 90
  Proof. by rewrite big_opL_app. Qed.

91 92
  Lemma big_sepL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
93
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
94
  Proof. apply big_opL_forall; apply _. Qed.
95 96
  Lemma big_sepL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
97
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
98
  Proof. apply big_opL_proper. Qed.
99
  Lemma big_sepL_submseteq `{BiAffine PROP} (Φ : A  PROP) l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
100
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
Robbert Krebbers's avatar
Robbert Krebbers committed
101 102 103
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_sepL_app sep_elim_l.
  Qed.
104

105 106
  Global Instance big_sepL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
107
           (big_opL (@bi_sep PROP) (A:=A)).
108
  Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
109
  Global Instance big_sepL_id_mono' :
110
    Proper (Forall2 () ==> ()) (big_opL (@bi_sep PROP) (λ _ P, P)).
111
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
112

113
  Lemma big_sepL_emp l : ([ list] ky  l, emp) @{PROP} emp.
Robbert Krebbers's avatar
Robbert Krebbers committed
114 115
  Proof. by rewrite big_opL_unit. Qed.

116 117 118 119
  Lemma big_sepL_lookup_acc Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  (Φ i x - ([ list] ky  l, Φ k y)).
  Proof.
120 121 122
    intros Hli. rewrite -(take_drop_middle l i x) // big_sepL_app /=.
    rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. by apply sep_mono_r, wand_intro_l.
123 124
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
125
  Lemma big_sepL_lookup Φ l i x `{!Absorbing (Φ i x)} :
126
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
127
  Proof. intros. rewrite big_sepL_lookup_acc //. by rewrite sep_elim_l. Qed.
128

Robbert Krebbers's avatar
Robbert Krebbers committed
129
  Lemma big_sepL_elem_of (Φ : A  PROP) l x `{!Absorbing (Φ x)} :
130
    x  l  ([ list] y  l, Φ y)  Φ x.
131 132 133
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_sepL_lookup (λ _, Φ)).
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
134

Robbert Krebbers's avatar
Robbert Krebbers committed
135
  Lemma big_sepL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
136
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
137
  Proof. by rewrite big_opL_fmap. Qed.
138

139 140 141 142
  Lemma big_sepL_bind {B} (f : A  list B) (Φ : B  PROP) l :
    ([ list] y  l = f, Φ y)  ([ list] x  l, [ list] y  f x, Φ y).
  Proof. by rewrite big_opL_bind. Qed.

143
  Lemma big_sepL_sep Φ Ψ l :
144 145
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
146
  Proof. by rewrite big_opL_op. Qed.
147

148 149 150
  Lemma big_sepL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
151
  Proof. auto using and_intro, big_sepL_mono, and_elim_l, and_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
152

153
  Lemma big_sepL_persistently `{BiAffine PROP} Φ l :
154
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
155
  Proof. apply (big_opL_commute _). Qed.
156

157
  Lemma big_sepL_forall `{BiAffine PROP} Φ l :
158
    ( k x, Persistent (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
159
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
160 161 162
  Proof.
    intros HΦ. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
Robbert Krebbers's avatar
Robbert Krebbers committed
163 164
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepL_lookup. }
    revert Φ HΦ. induction l as [|x l IH]=> Φ HΦ; [by auto using big_sepL_nil'|].
165
    rewrite big_sepL_cons. rewrite -persistent_and_sep; apply and_intro.
166
    - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
167 168 169 170
    - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Lemma big_sepL_impl Φ Ψ l :
Robbert Krebbers's avatar
Robbert Krebbers committed
171
    ([ list] kx  l, Φ k x) -
172
     ( k x, l !! k = Some x  Φ k x - Ψ k x) -
Robbert Krebbers's avatar
Robbert Krebbers committed
173
    [ list] kx  l, Ψ k x.
174
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
175 176
    apply wand_intro_l. revert Φ Ψ. induction l as [|x l IH]=> Φ Ψ /=.
    { by rewrite sep_elim_r. }
177
    rewrite intuitionistically_sep_dup -assoc [( _  _)%I]comm -!assoc assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
178 179
    apply sep_mono.
    - rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
180
      by rewrite intuitionistically_elim wand_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
181
    - rewrite comm -(IH (Φ  S) (Ψ  S)) /=.
182
      apply sep_mono_l, affinely_mono, persistently_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
183
      apply forall_intro=> k. by rewrite (forall_elim (S k)).
184 185
  Qed.

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
  Lemma big_sepL_delete Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)
     Φ i x  [ list] ky  l, if decide (k = i) then emp else Φ k y.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // !big_sepL_app /= Nat.add_0_r.
    rewrite take_length_le; last eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite decide_True // left_id.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. do 2 f_equiv.
    - apply big_sepL_proper=> k y Hk. apply lookup_lt_Some in Hk.
      rewrite take_length in Hk. by rewrite decide_False; last lia.
    - apply big_sepL_proper=> k y _. by rewrite decide_False; last lia.
  Qed.

  Lemma big_sepL_delete' `{!BiAffine PROP} Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  [ list] ky  l,  k  i   Φ k y.
  Proof.
    intros. rewrite big_sepL_delete //. (do 2 f_equiv)=> k y.
    rewrite -decide_emp. by repeat case_decide.
  Qed.

208 209 210 211
  Lemma big_sepL_replicate l P :
    [] replicate (length l) P  [ list] y  l, P.
  Proof. induction l as [|x l]=> //=; by f_equiv. Qed.

212
  Global Instance big_sepL_nil_persistent Φ :
213
    Persistent ([ list] kx  [], Φ k x).
214
  Proof. simpl; apply _. Qed.
215
  Global Instance big_sepL_persistent Φ l :
216
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
217
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
218
  Global Instance big_sepL_persistent_id Ps :
219
    TCForall Persistent Ps  Persistent ([] Ps).
220
  Proof. induction 1; simpl; apply _. Qed.
221

222 223 224
  Global Instance big_sepL_nil_affine Φ :
    Affine ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
225 226 227
  Global Instance big_sepL_affine Φ l :
    ( k x, Affine (Φ k x))  Affine ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
228 229
  Global Instance big_sepL_affine_id Ps : TCForall Affine Ps  Affine ([] Ps).
  Proof. induction 1; simpl; apply _. Qed.
230
End sep_list.
231

232
Section sep_list_more.
233 234
  Context {A : Type}.
  Implicit Types l : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
235
  Implicit Types Φ Ψ : nat  A  PROP.
236 237 238
  (* Some lemmas depend on the generalized versions of the above ones. *)

  Lemma big_sepL_zip_with {B C} Φ f (l1 : list B) (l2 : list C) :
Robbert Krebbers's avatar
Robbert Krebbers committed
239
    ([ list] kx  zip_with f l1 l2, Φ k x)
Robbert Krebbers's avatar
Robbert Krebbers committed
240
     ([ list] kx  l1, if l2 !! k is Some y then Φ k (f x y) else emp).
241
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
242 243 244
    revert Φ l2; induction l1 as [|x l1 IH]=> Φ [|y l2] //=.
    - by rewrite big_sepL_emp left_id.
    - by rewrite IH.
245
  Qed.
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
End sep_list_more.

Lemma big_sepL2_alt {A B} (Φ : nat  A  B  PROP) l1 l2 :
  ([ list] ky1;y2  l1; l2, Φ k y1 y2)
    length l1 = length l2   [ list] k  y  zip l1 l2, Φ k (y.1) (y.2).
Proof.
  apply (anti_symm _).
  - apply and_intro.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      rewrite IH sep_elim_r. apply pure_mono; auto.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      by rewrite IH.
  - apply pure_elim_l=> /Forall2_same_length Hl. revert Φ.
    induction Hl as [|x1 l1 x2 l2 _ _ IH]=> Φ //=. by rewrite -IH.
Qed.

(** ** Big ops over two lists *)
Section sep_list2.
  Context {A B : Type}.
  Implicit Types Φ Ψ : nat  A  B  PROP.

  Lemma big_sepL2_nil Φ : ([ list] ky1;y2  []; [], Φ k y1 y2)  emp.
  Proof. done. Qed.
  Lemma big_sepL2_nil' `{BiAffine PROP} P Φ : P  [ list] ky1;y2  [];[], Φ k y1 y2.
  Proof. apply (affine _). Qed.

  Lemma big_sepL2_cons Φ x1 x2 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; x2 :: l2, Φ k y1 y2)
     Φ 0 x1 x2  [ list] ky1;y2  l1;l2, Φ (S k) y1 y2.
  Proof. done. Qed.
  Lemma big_sepL2_cons_inv_l Φ x1 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; l2, Φ k y1 y2) -
     x2 l2',  l2 = x2 :: l2'  
              Φ 0 x1 x2  [ list] ky1;y2  l1;l2', Φ (S k) y1 y2.
  Proof.
    destruct l2 as [|x2 l2]; simpl; auto using False_elim.
    by rewrite -(exist_intro x2) -(exist_intro l2) pure_True // left_id.
  Qed.
  Lemma big_sepL2_cons_inv_r Φ x2 l1 l2 :
    ([ list] ky1;y2  l1; x2 :: l2, Φ k y1 y2) -
     x1 l1',  l1 = x1 :: l1'  
              Φ 0 x1 x2  [ list] ky1;y2  l1';l2, Φ (S k) y1 y2.
  Proof.
    destruct l1 as [|x1 l1]; simpl; auto using False_elim.
    by rewrite -(exist_intro x1) -(exist_intro l1) pure_True // left_id.
  Qed.

  Lemma big_sepL2_singleton Φ x1 x2 :
    ([ list] ky1;y2  [x1];[x2], Φ k y1 y2)  Φ 0 x1 x2.
  Proof. by rewrite /= right_id. Qed.

  Lemma big_sepL2_length Φ l1 l2 :
    ([ list] ky1;y2  l1; l2, Φ k y1 y2) -  length l1 = length l2 .
  Proof. by rewrite big_sepL2_alt and_elim_l. Qed.

  Lemma big_sepL2_app Φ l1 l2 l1' l2' :
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) -
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k) y1 y2) -
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2).
  Proof.
    apply wand_intro_r. revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /=.
    - by rewrite left_id.
    - rewrite left_absorb. apply False_elim.
    - rewrite left_absorb. apply False_elim.
    - by rewrite -assoc IH.
  Qed.
  Lemma big_sepL2_app_inv_l Φ l1' l1'' l2 :
    ([ list] ky1;y2  l1' ++ l1''; l2, Φ k y1 y2) -
     l2' l2'',  l2 = l2' ++ l2''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l1' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l1') l2))
      -(exist_intro (drop (length l1') l2)) take_drop pure_True // left_id.
    revert Φ l2. induction l1' as [|x1 l1' IH]=> Φ -[|x2 l2] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
  Lemma big_sepL2_app_inv_r Φ l1 l2' l2'' :
    ([ list] ky1;y2  l1; l2' ++ l2'', Φ k y1 y2) -
     l1' l1'',  l1 = l1' ++ l1''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l2' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l2') l1))
      -(exist_intro (drop (length l2') l1)) take_drop pure_True // left_id.
    revert Φ l1. induction l2' as [|x2 l2' IH]=> Φ -[|x1 l1] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
338 339 340 341 342 343 344 345 346 347
  Lemma big_sepL2_app_inv Φ l1 l2 l1' l2' :
    length l1 = length l1' 
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2) -
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) 
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k)%nat y1 y2).
  Proof.
    revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] //= ?; simplify_eq.
    - by rewrite left_id.
    - by rewrite -assoc IH.
  Qed.
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

  Lemma big_sepL2_mono Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2].
    rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
  Qed.
  Lemma big_sepL2_proper Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros; apply (anti_symm _);
      apply big_sepL2_mono; auto using equiv_entails, equiv_entails_sym.
  Qed.

  Global Instance big_sepL2_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n)))
      ==> (=) ==> (=) ==> (dist n))
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof.
    intros Φ1 Φ2 HΦ x1 ? <- x2 ? <-. rewrite !big_sepL2_alt. f_equiv.
    f_equiv=> k [y1 y2]. apply HΦ.
  Qed.
  Global Instance big_sepL2_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_mono; intros; apply Hf. Qed.
  Global Instance big_sepL2_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_proper; intros; apply Hf. Qed.

  Lemma big_sepL2_lookup_acc Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  (Φ i x1 x2 - ([ list] ky1;y2  l1;l2, Φ k y1 y2)).
  Proof.
    intros Hl1 Hl2. rewrite big_sepL2_alt. apply pure_elim_l=> Hl.
    rewrite {1}big_sepL_lookup_acc; last by rewrite lookup_zip_with; simplify_option_eq.
    by rewrite pure_True // left_id.
  Qed.

  Lemma big_sepL2_lookup Φ l1 l2 i x1 x2 `{!Absorbing (Φ i x1 x2)} :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2)  Φ i x1 x2.
  Proof. intros. rewrite big_sepL2_lookup_acc //. by rewrite sep_elim_l. Qed.

  Lemma big_sepL2_fmap_l {A'} (f : A  A') (Φ : nat  A'  B  PROP) l1 l2 :
    ([ list] ky1;y2  f <$> l1; l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k (f y1) y2).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.
  Lemma big_sepL2_fmap_r {B'} (g : B  B') (Φ : nat  A  B'  PROP) l1 l2 :
    ([ list] ky1;y2  l1; g <$> l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 (g y2)).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.

413 414 415 416 417 418 419 420 421 422 423
  Lemma big_sepL2_reverse_2 (Φ : A  B  PROP) l1 l2 :
    ([ list] y1;y2  l1;l2, Φ y1 y2)  ([ list] y1;y2  reverse l1;reverse l2, Φ y1 y2).
  Proof.
    revert l2. induction l1 as [|x1 l1 IH]; intros [|x2 l2]; simpl; auto using False_elim.
    rewrite !reverse_cons (comm bi_sep) IH.
    by rewrite (big_sepL2_app _ _ [x1] _ [x2]) big_sepL2_singleton wand_elim_l.
  Qed.
  Lemma big_sepL2_reverse (Φ : A  B  PROP) l1 l2 :
    ([ list] y1;y2  reverse l1;reverse l2, Φ y1 y2)  ([ list] y1;y2  l1;l2, Φ y1 y2).
  Proof. apply (anti_symm _); by rewrite big_sepL2_reverse_2 ?reverse_involutive. Qed.

424
  Lemma big_sepL2_sep Φ Ψ l1 l2 :
425 426 427
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof.
428
    rewrite !big_sepL2_alt big_sepL_sep !persistent_and_affinely_sep_l.
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
    rewrite -assoc (assoc _ _ (<affine> _)%I). rewrite -(comm bi_sep (<affine> _)%I).
    rewrite -assoc (assoc _ _ (<affine> _)%I) -!persistent_and_affinely_sep_l.
    by rewrite affinely_and_r persistent_and_affinely_sep_l idemp.
  Qed.

  Lemma big_sepL2_and Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof. auto using and_intro, big_sepL2_mono, and_elim_l, and_elim_r. Qed.

  Lemma big_sepL2_persistently `{BiAffine PROP} Φ l1 l2 :
    <pers> ([ list] ky1;y2  l1;l2, Φ k y1 y2)
     [ list] ky1;y2  l1;l2, <pers> (Φ k y1 y2).
  Proof.
    by rewrite !big_sepL2_alt persistently_and persistently_pure big_sepL_persistently.
  Qed.

  Lemma big_sepL2_impl Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
     ( k x1 x2,
      l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2 - Ψ k x1 x2) -
    [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    apply wand_intro_l. revert Φ Ψ l2.
    induction l1 as [|x1 l1 IH]=> Φ Ψ [|x2 l2] /=; [by rewrite sep_elim_r..|].
    rewrite intuitionistically_sep_dup -assoc [( _  _)%I]comm -!assoc assoc.
    apply sep_mono.
    - rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2) !pure_True // !True_impl.
      by rewrite intuitionistically_elim wand_elim_l.
    - rewrite comm -(IH (Φ  S) (Ψ  S)) /=.
      apply sep_mono_l, affinely_mono, persistently_mono.
      apply forall_intro=> k. by rewrite (forall_elim (S k)).
  Qed.

  Global Instance big_sepL2_nil_persistent Φ :
    Persistent ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_persistent Φ l1 l2 :
    ( k x1 x2, Persistent (Φ k x1 x2)) 
    Persistent ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.

  Global Instance big_sepL2_nil_affine Φ :
    Affine ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_affine Φ l1 l2 :
    ( k x1 x2, Affine (Φ k x1 x2)) 
    Affine ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
End sep_list2.

Section and_list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types Φ Ψ : nat  A  PROP.

  Lemma big_andL_nil Φ : ([ list] ky  nil, Φ k y)  True.
  Proof. done. Qed.
  Lemma big_andL_nil' P Φ : P  [ list] ky  nil, Φ k y.
  Proof. by apply pure_intro. Qed.
  Lemma big_andL_cons Φ x l :
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
  Proof. by rewrite big_opL_cons. Qed.
  Lemma big_andL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_andL_app Φ l1 l2 :
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
  Proof. by rewrite big_opL_app. Qed.

  Lemma big_andL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
  Proof. apply big_opL_forall; apply _. Qed.
  Lemma big_andL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
  Proof. apply big_opL_proper. Qed.
  Lemma big_andL_submseteq (Φ : A  PROP) l1 l2 :
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_andL_app and_elim_l.
  Qed.

  Global Instance big_andL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
           (big_opL (@bi_and PROP) (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
517
  Global Instance big_andL_id_mono' :
518
    Proper (Forall2 () ==> ()) (big_opL (@bi_and PROP) (λ _ P, P)).
519 520
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

521
  Lemma big_andL_lookup Φ l i x :
522 523 524 525 526 527 528
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // big_andL_app /=.
    rewrite Nat.add_0_r take_length_le;
      eauto using lookup_lt_Some, Nat.lt_le_incl, and_elim_l', and_elim_r'.
  Qed.

529
  Lemma big_andL_elem_of (Φ : A  PROP) l x :
530 531 532 533 534 535 536 537 538
    x  l  ([ list] y  l, Φ y)  Φ x.
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_andL_lookup (λ _, Φ)).
  Qed.

  Lemma big_andL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
  Proof. by rewrite big_opL_fmap. Qed.

539 540 541 542
  Lemma big_andL_bind {B} (f : A  list B) (Φ : B  PROP) l :
    ([ list] y  l = f, Φ y)  ([ list] x  l, [ list] y  f x, Φ y).
  Proof. by rewrite big_opL_bind. Qed.

543 544
  Lemma big_andL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
545 546
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
  Proof. by rewrite big_opL_op. Qed.
547 548

  Lemma big_andL_persistently Φ l :
549
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
550 551
  Proof. apply (big_opL_commute _). Qed.

552
  Lemma big_andL_forall Φ l :
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
  Proof.
    apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_andL_lookup. }
    revert Φ. induction l as [|x l IH]=> Φ; [by auto using big_andL_nil'|].
    rewrite big_andL_cons. apply and_intro.
    - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
    - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Global Instance big_andL_nil_persistent Φ :
    Persistent ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
  Global Instance big_andL_persistent Φ l :
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
End and_list.
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
Section or_list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types Φ Ψ : nat  A  PROP.

  Lemma big_orL_nil Φ : ([ list] ky  nil, Φ k y)  False.
  Proof. done. Qed.
  Lemma big_orL_cons Φ x l :
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
  Proof. by rewrite big_opL_cons. Qed.
  Lemma big_orL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_orL_app Φ l1 l2 :
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
  Proof. by rewrite big_opL_app. Qed.

  Lemma big_orL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
  Proof. apply big_opL_forall; apply _. Qed.
  Lemma big_orL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
  Proof. apply big_opL_proper. Qed.
  Lemma big_orL_submseteq (Φ : A  PROP) l1 l2 :
    l1 + l2  ([ list] y  l1, Φ y)  [ list] y  l2, Φ y.
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_orL_app -or_intro_l.
  Qed.

  Global Instance big_orL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
           (big_opL (@bi_or PROP) (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
  Global Instance big_orL_id_mono' :
    Proper (Forall2 () ==> ()) (big_opL (@bi_or PROP) (λ _ P, P)).
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

  Lemma big_orL_lookup Φ l i x :
    l !! i = Some x  Φ i x  ([ list] ky  l, Φ k y).
  Proof.
    intros. rewrite -(take_drop_middle l i x) // big_orL_app /=.
    rewrite Nat.add_0_r take_length_le;
      eauto using lookup_lt_Some, Nat.lt_le_incl, or_intro_l', or_intro_r'.
  Qed.

  Lemma big_orL_elem_of (Φ : A  PROP) l x :
    x  l  Φ x  ([ list] y  l, Φ y).
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_orL_lookup (λ _, Φ)).
  Qed.

  Lemma big_orL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
  Proof. by rewrite big_opL_fmap. Qed.

629 630 631 632
  Lemma big_orL_bind {B} (f : A  list B) (Φ : B  PROP) l :
    ([ list] y  l = f, Φ y)  ([ list] x  l, [ list] y  f x, Φ y).
  Proof. by rewrite big_opL_bind. Qed.

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
  Lemma big_orL_or Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
  Proof. by rewrite big_opL_op. Qed.

  Lemma big_orL_persistently Φ l :
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
  Proof. apply (big_opL_commute _). Qed.

  Lemma big_orL_exist Φ l :
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
  Proof.
    apply (anti_symm _).
    { revert Φ. induction l as [|x l IH]=> Φ.
      { rewrite big_orL_nil. apply False_elim. }
      rewrite big_orL_cons. apply or_elim.
      - by rewrite -(exist_intro 0) -(exist_intro x) pure_True // left_id.
      - rewrite IH. apply exist_elim=> k. by rewrite -(exist_intro (S k)). }
    apply exist_elim=> k; apply exist_elim=> x. apply pure_elim_l=> ?.
    by apply: big_orL_lookup.
  Qed.

  Lemma big_orL_sep_l P Φ l :
    P  ([ list] kx  l, Φ k x)  ([ list] kx  l, P  Φ k x).
  Proof.
    rewrite !big_orL_exist sep_exist_l.
    f_equiv=> k. rewrite sep_exist_l. f_equiv=> x.
    by rewrite !persistent_and_affinely_sep_l !assoc (comm _ P).
 Qed.
  Lemma big_orL_sep_r Q Φ l :
    ([ list] kx  l, Φ k x)  Q  ([ list] kx  l, Φ k x  Q).
  Proof. setoid_rewrite (comm bi_sep). apply big_orL_sep_l. Qed.

  Global Instance big_orL_nil_persistent Φ :
    Persistent ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
  Global Instance big_orL_persistent Φ l :
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
End or_list.

674
(** ** Big ops over finite maps *)
Dan Frumin's avatar
Dan Frumin committed
675
Section map.
676 677
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
Robbert Krebbers's avatar
Robbert Krebbers committed
678
  Implicit Types Φ Ψ : K  A  PROP.
679

Robbert Krebbers's avatar
Robbert Krebbers committed
680 681 682 683
  Lemma big_sepM_mono Φ Ψ m :
    ( k x, m !! k = Some x  Φ k x  Ψ k x) 
    ([ map] k  x  m, Φ k x)  [ map] k  x  m, Ψ k x.
  Proof. apply big_opM_forall; apply _ || auto. Qed.
684 685
  Lemma big_sepM_proper Φ Ψ m :
    ( k x, m !! k = Some x  Φ k x  Ψ k x) 
686
    ([ map] k  x  m, Φ k x)  ([ map] k  x  m, Ψ k x).
687
  Proof. apply big_opM_proper. Qed.
688
  Lemma big_sepM_subseteq `{BiAffine PROP} Φ m1 m2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
689 690
    m2  m1  ([ map] k  x  m1, Φ k x)  [ map] k  x  m2, Φ k x.
  Proof. intros. by apply big_sepL_submseteq, map_to_list_submseteq. Qed.
691

692 693
  Global Instance big_sepM_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
694 695
           (big_opM (@bi_sep PROP) (K:=K) (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_sepM_mono=> ???; apply Hf. Qed.
696

Robbert Krebbers's avatar
Robbert Krebbers committed
697
  Lemma big_sepM_empty Φ : ([ map] kx  , Φ k x)  emp.
698
  Proof. by rewrite big_opM_empty. Qed.
699
  Lemma big_sepM_empty' `{BiAffine PROP} P Φ : P  [ map] kx  , Φ k x.
Robbert Krebbers's avatar
Robbert Krebbers committed
700
  Proof. rewrite big_sepM_empty. apply: affine. Qed.
701

702
  Lemma big_sepM_insert Φ m i x :
703
    m !! i = None 
704
    ([ map] ky  <[i:=x]> m, Φ k y)  Φ i x  [ map] ky  m, Φ k y.
705
  Proof. apply big_opM_insert. Qed.
706

707
  Lemma big_sepM_delete Φ m i x :
708
    m !! i = Some x 
709
    ([ map] ky  m, Φ k y)  Φ i x  [ map] ky  delete i m, Φ k y.
710
  Proof. apply big_opM_delete. Qed.
711

712 713 714 715 716 717 718 719 720 721 722 723 724
  Lemma big_sepM_insert_2 Φ m i x :
    TCOr ( x, Affine (Φ i x)) (Absorbing (Φ i x)) 
    Φ i x - ([ map] ky  m, Φ k y) - [ map] ky  <[i:=x]> m, Φ k y.
  Proof.
    intros Ha. apply wand_intro_r. destruct (m !! i) as [y|] eqn:Hi; last first.
    { by rewrite -big_sepM_insert. }
    assert (TCOr (Affine (Φ i y)) (Absorbing (Φ i x))).
    { destruct Ha; try apply _. }
    rewrite big_sepM_delete // assoc.
    rewrite (sep_elim_l (Φ i x)) -big_sepM_insert ?lookup_delete //.
    by rewrite insert_delete.
  Qed.

725 726 727 728 729 730 731
  Lemma big_sepM_lookup_acc Φ m i x :
    m !! i = Some x 
    ([ map] ky  m, Φ k y)  Φ i x  (Φ i x - ([ map] ky  m, Φ k y)).
  Proof.
    intros. rewrite big_sepM_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
732
  Lemma big_sepM_lookup Φ m i x `{!Absorbing (Φ i x)} :
733
    m !! i = Some x  ([ map] ky  m, Φ k y)  Φ i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
734
  Proof. intros. rewrite big_sepM_lookup_acc //. by rewrite sep_elim_l. Qed.
735

Robbert Krebbers's avatar
Robbert Krebbers committed
736
  Lemma big_sepM_lookup_dom (Φ : K  PROP) m i `{!Absorbing (Φ i)} :
Robbert Krebbers's avatar
Robbert Krebbers committed
737 738
    is_Some (m !! i)  ([ map] k_  m, Φ k)  Φ i.
  Proof. intros [x ?]. by eapply (big_sepM_lookup (λ i x, Φ i)). Qed.
739

740
  Lemma big_sepM_singleton Φ i x : ([ map] ky  {[i:=x]}, Φ k y)  Φ i x.
741
  Proof. by rewrite big_opM_singleton. Qed.
742

Robbert Krebbers's avatar
Robbert Krebbers committed
743
  Lemma big_sepM_fmap {B} (f : A  B) (Φ : K  B  PROP) m :
744
    ([ map] ky  f <$> m, Φ k y)  ([ map] ky  m, Φ k (f y)).
745
  Proof. by rewrite big_opM_fmap. Qed.
746

Robbert Krebbers's avatar
Robbert Krebbers committed
747 748 749
  Lemma big_sepM_insert_override Φ m i x x' :
    m !! i = Some x  (Φ i x  Φ i x') 
    ([ map] ky  <[i:=x']> m, Φ k y)  ([ map] ky  m, Φ k y).
750
  Proof. apply big_opM_insert_override. Qed.
751

Robbert Krebbers's avatar
Robbert Krebbers committed
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
  Lemma big_sepM_insert_override_1 Φ m i x x' :
    m !! i = Some x 
    ([ map] ky  <[i:=x']> m, Φ k y) 
      (Φ i x' - Φ i x) - ([ map] ky  m, Φ k y).
  Proof.
    intros ?. apply wand_intro_l.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
    by rewrite assoc wand_elim_l -big_sepM_delete.
  Qed.

  Lemma big_sepM_insert_override_2 Φ m i x x' :
    m !! i = Some x 
    ([ map] ky  m, Φ k y) 
      (Φ i x - Φ i x') - ([ map] ky  <[i:=x']> m, Φ k y).
  Proof.
    intros ?. apply wand_intro_l.
    rewrite {1}big_sepM_delete //; rewrite assoc wand_elim_l.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
  Qed.

Dan Frumin's avatar
Dan Frumin committed
772 773 774 775 776 777 778 779 780 781 782
  Lemma big_sepM_insert_acc Φ m i x :
    m !! i = Some x 
    ([ map] ky  m, Φ k y) 
      Φ i x  ( x', Φ i x' - ([ map] ky  <[i:=x']> m, Φ k y)).
  Proof.
    intros ?. rewrite {1}big_sepM_delete //. apply sep_mono; [done|].
    apply forall_intro=> x'.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
    by apply wand_intro_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
783
  Lemma big_sepM_fn_insert {B} (Ψ : K  A  B  PROP) (f : K  B) m i x b :
784
    m !! i = None 
785 786
       ([ map] ky  <[i:=x]> m, Ψ k y (<[i:=b]> f k))
     (Ψ i x b  [ map] ky  m, Ψ k y (f k)).
787
  Proof. apply big_opM_fn_insert. Qed.
788

Robbert Krebbers's avatar
Robbert Krebbers committed
789
  Lemma big_sepM_fn_insert' (Φ : K  PROP) m i x P :
790
    m !! i = None 
791
    ([ map] ky  <[i:=x]> m, <[i:=P]> Φ k)  (P  [ map] ky  m, Φ k).
792
  Proof. apply big_opM_fn_insert'. Qed.
793

794 795 796 797 798 799
  Lemma big_sepM_union Φ m1 m2 :
    m1 ## m2 
    ([ map] ky  m1  m2, Φ k y)
     ([ map] ky  m1, Φ k y)  ([ map] ky  m2, Φ k y).
  Proof. apply big_opM_union. Qed.

800
  Lemma big_sepM_sep Φ Ψ m :
801
    ([ map] kx  m, Φ k x  Ψ k x)
802
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
803
  Proof. apply big_opM_op. Qed.
804

805 806 807
  Lemma big_sepM_and Φ Ψ m :
    ([ map] kx  m, Φ k x  Ψ k x)
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
808
  Proof. auto using and_intro, big_sepM_mono, and_elim_l, and_elim_r. Qed.
809

810
  Lemma big_sepM_persistently `{BiAffine PROP} Φ m :
811
    (<pers> ([ map] kx  m, Φ k x))  ([ map] kx  m, <pers> (Φ k x)).
812
  Proof. apply (big_opM_commute _). Qed.
813

814
  Lemma big_sepM_forall `{BiAffine PROP} Φ m :
815
    ( k x, Persistent (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
816
    ([ map] kx  m, Φ k x)  ( k x, m !! k = Some x  Φ k x).
817 818 819
  Proof.
    intros. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
Robbert Krebbers's avatar
Robbert Krebbers committed
820 821
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepM_lookup. }
    induction m as [|i x m ? IH] using map_ind; auto using big_sepM_empty'.
822
    rewrite big_sepM_insert // -persistent_and_sep. apply and_intro.
823
    - rewrite (forall_elim i) (forall_elim x) lookup_insert.
824
      by rewrite pure_True // True_impl.
825
    - rewrite -IH. apply forall_mono=> k; apply forall_mono=> y.
826 827
      apply impl_intro_l, pure_elim_l=> ?.
      rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
828
      by rewrite pure_True // True_impl.
829 830 831
  Qed.

  Lemma big_sepM_impl Φ Ψ m :
Robbert Krebbers's avatar
Robbert Krebbers committed
832
    ([ map] kx  m, Φ k x) -
833
     ( k x, m !! k = Some x  Φ k x - Ψ k x) -
Robbert Krebbers's avatar
Robbert Krebbers committed
834
    [ map] kx  m, Ψ k x