From iris.algebra Require Export cofe. Class Core (A : Type) := core : A → A. Instance: Params (@core) 2. Class Op (A : Type) := op : A → A → A. Instance: Params (@op) 2. Infix "⋅" := op (at level 50, left associativity) : C_scope. Notation "(⋅)" := op (only parsing) : C_scope. Definition included `{Equiv A, Op A} (x y : A) := ∃ z, y ≡ x ⋅ z. Infix "≼" := included (at level 70) : C_scope. Notation "(≼)" := included (only parsing) : C_scope. Hint Extern 0 (_ ≼ _) => reflexivity. Instance: Params (@included) 3. Class ValidN (A : Type) := validN : nat → A → Prop. Instance: Params (@validN) 3. Notation "✓{ n } x" := (validN n x) (at level 20, n at next level, format "✓{ n } x"). Class Valid (A : Type) := valid : A → Prop. Instance: Params (@valid) 2. Notation "✓ x" := (valid x) (at level 20) : C_scope. Definition includedN `{Dist A, Op A} (n : nat) (x y : A) := ∃ z, y ≡{n}≡ x ⋅ z. Notation "x ≼{ n } y" := (includedN n x y) (at level 70, n at next level, format "x ≼{ n } y") : C_scope. Instance: Params (@includedN) 4. Hint Extern 0 (_ ≼{_} _) => reflexivity. Record CMRAMixin A `{Dist A, Equiv A, Core A, Op A, Valid A, ValidN A} := { (* setoids *) mixin_cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x); mixin_cmra_core_ne n : Proper (dist n ==> dist n) core; mixin_cmra_validN_ne n : Proper (dist n ==> impl) (validN n); (* valid *) mixin_cmra_valid_validN x : ✓ x ↔ ∀ n, ✓{n} x; mixin_cmra_validN_S n x : ✓{S n} x → ✓{n} x; (* monoid *) mixin_cmra_assoc : Assoc (≡) (⋅); mixin_cmra_comm : Comm (≡) (⋅); mixin_cmra_core_l x : core x ⋅ x ≡ x; mixin_cmra_core_idemp x : core (core x) ≡ core x; mixin_cmra_core_preserving x y : x ≼ y → core x ≼ core y; mixin_cmra_validN_op_l n x y : ✓{n} (x ⋅ y) → ✓{n} x; mixin_cmra_extend n x y1 y2 : ✓{n} x → x ≡{n}≡ y1 ⋅ y2 → { z | x ≡ z.1 ⋅ z.2 ∧ z.1 ≡{n}≡ y1 ∧ z.2 ≡{n}≡ y2 } }. (** Bundeled version *) Structure cmraT := CMRAT { cmra_car :> Type; cmra_equiv : Equiv cmra_car; cmra_dist : Dist cmra_car; cmra_compl : Compl cmra_car; cmra_core : Core cmra_car; cmra_op : Op cmra_car; cmra_valid : Valid cmra_car; cmra_validN : ValidN cmra_car; cmra_cofe_mixin : CofeMixin cmra_car; cmra_mixin : CMRAMixin cmra_car }. Arguments CMRAT {_ _ _ _ _ _ _ _} _ _. Arguments cmra_car : simpl never. Arguments cmra_equiv : simpl never. Arguments cmra_dist : simpl never. Arguments cmra_compl : simpl never. Arguments cmra_core : simpl never. Arguments cmra_op : simpl never. Arguments cmra_valid : simpl never. Arguments cmra_validN : simpl never. Arguments cmra_cofe_mixin : simpl never. Arguments cmra_mixin : simpl never. Add Printing Constructor cmraT. Existing Instances cmra_core cmra_op cmra_valid cmra_validN. Coercion cmra_cofeC (A : cmraT) : cofeT := CofeT (cmra_cofe_mixin A). Canonical Structure cmra_cofeC. (** Lifting properties from the mixin *) Section cmra_mixin. Context {A : cmraT}. Implicit Types x y : A. Global Instance cmra_op_ne n (x : A) : Proper (dist n ==> dist n) (op x). Proof. apply (mixin_cmra_op_ne _ (cmra_mixin A)). Qed. Global Instance cmra_core_ne n : Proper (dist n ==> dist n) (@core A _). Proof. apply (mixin_cmra_core_ne _ (cmra_mixin A)). Qed. Global Instance cmra_validN_ne n : Proper (dist n ==> impl) (@validN A _ n). Proof. apply (mixin_cmra_validN_ne _ (cmra_mixin A)). Qed. Lemma cmra_valid_validN x : ✓ x ↔ ∀ n, ✓{n} x. Proof. apply (mixin_cmra_valid_validN _ (cmra_mixin A)). Qed. Lemma cmra_validN_S n x : ✓{S n} x → ✓{n} x. Proof. apply (mixin_cmra_validN_S _ (cmra_mixin A)). Qed. Global Instance cmra_assoc : Assoc (≡) (@op A _). Proof. apply (mixin_cmra_assoc _ (cmra_mixin A)). Qed. Global Instance cmra_comm : Comm (≡) (@op A _). Proof. apply (mixin_cmra_comm _ (cmra_mixin A)). Qed. Lemma cmra_core_l x : core x ⋅ x ≡ x. Proof. apply (mixin_cmra_core_l _ (cmra_mixin A)). Qed. Lemma cmra_core_idemp x : core (core x) ≡ core x. Proof. apply (mixin_cmra_core_idemp _ (cmra_mixin A)). Qed. Lemma cmra_core_preserving x y : x ≼ y → core x ≼ core y. Proof. apply (mixin_cmra_core_preserving _ (cmra_mixin A)). Qed. Lemma cmra_validN_op_l n x y : ✓{n} (x ⋅ y) → ✓{n} x. Proof. apply (mixin_cmra_validN_op_l _ (cmra_mixin A)). Qed. Lemma cmra_extend n x y1 y2 : ✓{n} x → x ≡{n}≡ y1 ⋅ y2 → { z | x ≡ z.1 ⋅ z.2 ∧ z.1 ≡{n}≡ y1 ∧ z.2 ≡{n}≡ y2 }. Proof. apply (mixin_cmra_extend _ (cmra_mixin A)). Qed. End cmra_mixin. (** * CMRAs with a unit element *) (** We use the notation ∅ because for most instances (maps, sets, etc) the `empty' element is the unit. *) Class CMRAUnit (A : cmraT) `{Empty A} := { cmra_unit_valid : ✓ ∅; cmra_unit_left_id :> LeftId (≡) ∅ (⋅); cmra_unit_timeless :> Timeless ∅ }. Instance cmra_unit_inhabited `{CMRAUnit A} : Inhabited A := populate ∅. (** * Persistent elements *) Class Persistent {A : cmraT} (x : A) := persistent : core x ≡ x. Arguments persistent {_} _ {_}. (** * Discrete CMRAs *) Class CMRADiscrete (A : cmraT) := { cmra_discrete :> Discrete A; cmra_discrete_valid (x : A) : ✓{0} x → ✓ x }. (** * Morphisms *) Class CMRAMonotone {A B : cmraT} (f : A → B) := { cmra_monotone_ne n :> Proper (dist n ==> dist n) f; validN_preserving n x : ✓{n} x → ✓{n} f x; included_preserving x y : x ≼ y → f x ≼ f y }. Arguments validN_preserving {_ _} _ {_} _ _ _. Arguments included_preserving {_ _} _ {_} _ _ _. (** * Local updates *) (** The idea is that lemams taking this class will usually have L explicit, and leave Lv implicit - it will be inferred by the typeclass machinery. *) Class LocalUpdate {A : cmraT} (Lv : A → Prop) (L : A → A) := { local_update_ne n :> Proper (dist n ==> dist n) L; local_updateN n x y : Lv x → ✓{n} (x ⋅ y) → L (x ⋅ y) ≡{n}≡ L x ⋅ y }. Arguments local_updateN {_ _} _ {_} _ _ _ _ _. (** * Frame preserving updates *) Definition cmra_updateP {A : cmraT} (x : A) (P : A → Prop) := ∀ n z, ✓{n} (x ⋅ z) → ∃ y, P y ∧ ✓{n} (y ⋅ z). Instance: Params (@cmra_updateP) 1. Infix "~~>:" := cmra_updateP (at level 70). Definition cmra_update {A : cmraT} (x y : A) := ∀ n z, ✓{n} (x ⋅ z) → ✓{n} (y ⋅ z). Infix "~~>" := cmra_update (at level 70). Instance: Params (@cmra_update) 1. (** * Properties **) Section cmra. Context {A : cmraT}. Implicit Types x y z : A. Implicit Types xs ys zs : list A. (** ** Setoids *) Global Instance cmra_core_proper : Proper ((≡) ==> (≡)) (@core A _). Proof. apply (ne_proper _). Qed. Global Instance cmra_op_ne' n : Proper (dist n ==> dist n ==> dist n) (@op A _). Proof. intros x1 x2 Hx y1 y2 Hy. by rewrite Hy (comm _ x1) Hx (comm _ y2). Qed. Global Instance ra_op_proper' : Proper ((≡) ==> (≡) ==> (≡)) (@op A _). Proof. apply (ne_proper_2 _). Qed. Global Instance cmra_validN_ne' : Proper (dist n ==> iff) (@validN A _ n) | 1. Proof. by split; apply cmra_validN_ne. Qed. Global Instance cmra_validN_proper : Proper ((≡) ==> iff) (@validN A _ n) | 1. Proof. by intros n x1 x2 Hx; apply cmra_validN_ne', equiv_dist. Qed. Global Instance cmra_valid_proper : Proper ((≡) ==> iff) (@valid A _). Proof. intros x y Hxy; rewrite !cmra_valid_validN. by split=> ? n; [rewrite -Hxy|rewrite Hxy]. Qed. Global Instance cmra_includedN_ne n : Proper (dist n ==> dist n ==> iff) (@includedN A _ _ n) | 1. Proof. intros x x' Hx y y' Hy. by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy]. Qed. Global Instance cmra_includedN_proper n : Proper ((≡) ==> (≡) ==> iff) (@includedN A _ _ n) | 1. Proof. intros x x' Hx y y' Hy; revert Hx Hy; rewrite !equiv_dist=> Hx Hy. by rewrite (Hx n) (Hy n). Qed. Global Instance cmra_included_proper : Proper ((≡) ==> (≡) ==> iff) (@included A _ _) | 1. Proof. intros x x' Hx y y' Hy. by split; intros [z ?]; exists z; [rewrite -Hx -Hy|rewrite Hx Hy]. Qed. Global Instance cmra_update_proper : Proper ((≡) ==> (≡) ==> iff) (@cmra_update A). Proof. intros x1 x2 Hx y1 y2 Hy; split=>? n z; [rewrite -Hx -Hy|rewrite Hx Hy]; auto. Qed. Global Instance cmra_updateP_proper : Proper ((≡) ==> pointwise_relation _ iff ==> iff) (@cmra_updateP A). Proof. intros x1 x2 Hx P1 P2 HP; split=>Hup n z; [rewrite -Hx; setoid_rewrite <-HP|rewrite Hx; setoid_rewrite HP]; auto. Qed. (** ** Validity *) Lemma cmra_validN_le n n' x : ✓{n} x → n' ≤ n → ✓{n'} x. Proof. induction 2; eauto using cmra_validN_S. Qed. Lemma cmra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x. Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_l. Qed. Lemma cmra_validN_op_r n x y : ✓{n} (x ⋅ y) → ✓{n} y. Proof. rewrite (comm _ x); apply cmra_validN_op_l. Qed. Lemma cmra_valid_op_r x y : ✓ (x ⋅ y) → ✓ y. Proof. rewrite !cmra_valid_validN; eauto using cmra_validN_op_r. Qed. (** ** Core *) Lemma cmra_core_r x : x ⋅ core x ≡ x. Proof. by rewrite (comm _ x) cmra_core_l. Qed. Lemma cmra_core_core x : core x ⋅ core x ≡ core x. Proof. by rewrite -{2}(cmra_core_idemp x) cmra_core_r. Qed. Lemma cmra_core_validN n x : ✓{n} x → ✓{n} core x. Proof. rewrite -{1}(cmra_core_l x); apply cmra_validN_op_l. Qed. Lemma cmra_core_valid x : ✓ x → ✓ core x. Proof. rewrite -{1}(cmra_core_l x); apply cmra_valid_op_l. Qed. Global Instance cmra_core_persistent x : Persistent (core x). Proof. apply cmra_core_idemp. Qed. (** ** Order *) Lemma cmra_included_includedN n x y : x ≼ y → x ≼{n} y. Proof. intros [z ->]. by exists z. Qed. Global Instance cmra_includedN_preorder n : PreOrder (@includedN A _ _ n). Proof. split. - by intros x; exists (core x); rewrite cmra_core_r. - intros x y z [z1 Hy] [z2 Hz]; exists (z1 ⋅ z2). by rewrite assoc -Hy -Hz. Qed. Global Instance cmra_included_preorder: PreOrder (@included A _ _). Proof. split. - by intros x; exists (core x); rewrite cmra_core_r. - intros x y z [z1 Hy] [z2 Hz]; exists (z1 ⋅ z2). by rewrite assoc -Hy -Hz. Qed. Lemma cmra_validN_includedN n x y : ✓{n} y → x ≼{n} y → ✓{n} x. Proof. intros Hyv [z ?]; cofe_subst y; eauto using cmra_validN_op_l. Qed. Lemma cmra_validN_included n x y : ✓{n} y → x ≼ y → ✓{n} x. Proof. intros Hyv [z ?]; setoid_subst; eauto using cmra_validN_op_l. Qed. Lemma cmra_includedN_S n x y : x ≼{S n} y → x ≼{n} y. Proof. by intros [z Hz]; exists z; apply dist_S. Qed. Lemma cmra_includedN_le n n' x y : x ≼{n} y → n' ≤ n → x ≼{n'} y. Proof. induction 2; auto using cmra_includedN_S. Qed. Lemma cmra_includedN_l n x y : x ≼{n} x ⋅ y. Proof. by exists y. Qed. Lemma cmra_included_l x y : x ≼ x ⋅ y. Proof. by exists y. Qed. Lemma cmra_includedN_r n x y : y ≼{n} x ⋅ y. Proof. rewrite (comm op); apply cmra_includedN_l. Qed. Lemma cmra_included_r x y : y ≼ x ⋅ y. Proof. rewrite (comm op); apply cmra_included_l. Qed. Lemma cmra_core_preservingN n x y : x ≼{n} y → core x ≼{n} core y. Proof. intros [z ->]. apply cmra_included_includedN, cmra_core_preserving, cmra_included_l. Qed. Lemma cmra_included_core x : core x ≼ x. Proof. by exists x; rewrite cmra_core_l. Qed. Lemma cmra_preservingN_l n x y z : x ≼{n} y → z ⋅ x ≼{n} z ⋅ y. Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed. Lemma cmra_preserving_l x y z : x ≼ y → z ⋅ x ≼ z ⋅ y. Proof. by intros [z1 Hz1]; exists z1; rewrite Hz1 (assoc op). Qed. Lemma cmra_preservingN_r n x y z : x ≼{n} y → x ⋅ z ≼{n} y ⋅ z. Proof. by intros; rewrite -!(comm _ z); apply cmra_preservingN_l. Qed. Lemma cmra_preserving_r x y z : x ≼ y → x ⋅ z ≼ y ⋅ z. Proof. by intros; rewrite -!(comm _ z); apply cmra_preserving_l. Qed. Lemma cmra_included_dist_l n x1 x2 x1' : x1 ≼ x2 → x1' ≡{n}≡ x1 → ∃ x2', x1' ≼ x2' ∧ x2' ≡{n}≡ x2. Proof. intros [z Hx2] Hx1; exists (x1' ⋅ z); split; auto using cmra_included_l. by rewrite Hx1 Hx2. Qed. (** ** Timeless *) Lemma cmra_timeless_included_l x y : Timeless x → ✓{0} y → x ≼{0} y → x ≼ y. Proof. intros ?? [x' ?]. destruct (cmra_extend 0 y x x') as ([z z']&Hy&Hz&Hz'); auto; simpl in *. by exists z'; rewrite Hy (timeless x z). Qed. Lemma cmra_timeless_included_r n x y : Timeless y → x ≼{0} y → x ≼{n} y. Proof. intros ? [x' ?]. exists x'. by apply equiv_dist, (timeless y). Qed. Lemma cmra_op_timeless x1 x2 : ✓ (x1 ⋅ x2) → Timeless x1 → Timeless x2 → Timeless (x1 ⋅ x2). Proof. intros ??? z Hz. destruct (cmra_extend 0 z x1 x2) as ([y1 y2]&Hz'&?&?); auto; simpl in *. { rewrite -?Hz. by apply cmra_valid_validN. } by rewrite Hz' (timeless x1 y1) // (timeless x2 y2). Qed. (** ** Discrete *) Lemma cmra_discrete_valid_iff `{CMRADiscrete A} n x : ✓ x ↔ ✓{n} x. Proof. split; first by rewrite cmra_valid_validN. eauto using cmra_discrete_valid, cmra_validN_le with lia. Qed. Lemma cmra_discrete_included_iff `{Discrete A} n x y : x ≼ y ↔ x ≼{n} y. Proof. split; first by apply cmra_included_includedN. intros [z ->%(timeless_iff _ _)]; eauto using cmra_included_l. Qed. Lemma cmra_discrete_updateP `{CMRADiscrete A} (x : A) (P : A → Prop) : (∀ z, ✓ (x ⋅ z) → ∃ y, P y ∧ ✓ (y ⋅ z)) → x ~~>: P. Proof. intros ? n. by setoid_rewrite <-cmra_discrete_valid_iff. Qed. Lemma cmra_discrete_update `{CMRADiscrete A} (x y : A) : (∀ z, ✓ (x ⋅ z) → ✓ (y ⋅ z)) → x ~~> y. Proof. intros ? n. by setoid_rewrite <-cmra_discrete_valid_iff. Qed. (** ** RAs with a unit element *) Section unit. Context `{Empty A, !CMRAUnit A}. Lemma cmra_unit_validN n : ✓{n} ∅. Proof. apply cmra_valid_validN, cmra_unit_valid. Qed. Lemma cmra_unit_leastN n x : ∅ ≼{n} x. Proof. by exists x; rewrite left_id. Qed. Lemma cmra_unit_least x : ∅ ≼ x. Proof. by exists x; rewrite left_id. Qed. Global Instance cmra_unit_right_id : RightId (≡) ∅ (⋅). Proof. by intros x; rewrite (comm op) left_id. Qed. Global Instance cmra_unit_persistent : Persistent ∅. Proof. by rewrite /Persistent -{2}(cmra_core_l ∅) right_id. Qed. Lemma cmra_core_unit : core (∅:A) ≡ ∅. Proof. by rewrite -{2}(cmra_core_l ∅) right_id. Qed. End unit. (** ** Local updates *) Global Instance local_update_proper Lv (L : A → A) : LocalUpdate Lv L → Proper ((≡) ==> (≡)) L. Proof. intros; apply (ne_proper _). Qed. Lemma local_update L `{!LocalUpdate Lv L} x y : Lv x → ✓ (x ⋅ y) → L (x ⋅ y) ≡ L x ⋅ y. Proof. by rewrite cmra_valid_validN equiv_dist=>?? n; apply (local_updateN L). Qed. Global Instance local_update_op x : LocalUpdate (λ _, True) (op x). Proof. split. apply _. by intros n y1 y2 _ _; rewrite assoc. Qed. Global Instance local_update_id : LocalUpdate (λ _, True) (@id A). Proof. split; auto with typeclass_instances. Qed. (** ** Updates *) Global Instance cmra_update_preorder : PreOrder (@cmra_update A). Proof. split. by intros x y. intros x y y' ?? z ?; naive_solver. Qed. Lemma cmra_update_updateP x y : x ~~> y ↔ x ~~>: (y =). Proof. split. - by intros Hx z ?; exists y; split; [done|apply (Hx z)]. - by intros Hx n z ?; destruct (Hx n z) as (?&<-&?). Qed. Lemma cmra_updateP_id (P : A → Prop) x : P x → x ~~>: P. Proof. by intros ? n z ?; exists x. Qed. Lemma cmra_updateP_compose (P Q : A → Prop) x : x ~~>: P → (∀ y, P y → y ~~>: Q) → x ~~>: Q. Proof. intros Hx Hy n z ?. destruct (Hx n z) as (y&?&?); auto. by apply (Hy y). Qed. Lemma cmra_updateP_compose_l (Q : A → Prop) x y : x ~~> y → y ~~>: Q → x ~~>: Q. Proof. rewrite cmra_update_updateP. intros; apply cmra_updateP_compose with (y =); intros; subst; auto. Qed. Lemma cmra_updateP_weaken (P Q : A → Prop) x : x ~~>: P → (∀ y, P y → Q y) → x ~~>: Q. Proof. eauto using cmra_updateP_compose, cmra_updateP_id. Qed. Lemma cmra_updateP_op (P1 P2 Q : A → Prop) x1 x2 : x1 ~~>: P1 → x2 ~~>: P2 → (∀ y1 y2, P1 y1 → P2 y2 → Q (y1 ⋅ y2)) → x1 ⋅ x2 ~~>: Q. Proof. intros Hx1 Hx2 Hy n z ?. destruct (Hx1 n (x2 ⋅ z)) as (y1&?&?); first by rewrite assoc. destruct (Hx2 n (y1 ⋅ z)) as (y2&?&?); first by rewrite assoc (comm _ x2) -assoc. exists (y1 ⋅ y2); split; last rewrite (comm _ y1) -assoc; auto. Qed. Lemma cmra_updateP_op' (P1 P2 : A → Prop) x1 x2 : x1 ~~>: P1 → x2 ~~>: P2 → x1 ⋅ x2 ~~>: λ y, ∃ y1 y2, y = y1 ⋅ y2 ∧ P1 y1 ∧ P2 y2. Proof. eauto 10 using cmra_updateP_op. Qed. Lemma cmra_update_op x1 x2 y1 y2 : x1 ~~> y1 → x2 ~~> y2 → x1 ⋅ x2 ~~> y1 ⋅ y2. Proof. rewrite !cmra_update_updateP; eauto using cmra_updateP_op with congruence. Qed. Lemma cmra_update_id x : x ~~> x. Proof. intro. auto. Qed. Section unit_updates. Context `{Empty A, !CMRAUnit A}. Lemma cmra_update_unit x : x ~~> ∅. Proof. intros n z; rewrite left_id; apply cmra_validN_op_r. Qed. Lemma cmra_update_unit_alt y : ∅ ~~> y ↔ ∀ x, x ~~> y. Proof. split; [intros; trans ∅|]; auto using cmra_update_unit. Qed. End unit_updates. End cmra. (** * Properties about monotone functions *) Instance cmra_monotone_id {A : cmraT} : CMRAMonotone (@id A). Proof. repeat split; by try apply _. Qed. Instance cmra_monotone_compose {A B C : cmraT} (f : A → B) (g : B → C) : CMRAMonotone f → CMRAMonotone g → CMRAMonotone (g ∘ f). Proof. split. - apply _. - move=> n x Hx /=. by apply validN_preserving, validN_preserving. - move=> x y Hxy /=. by apply included_preserving, included_preserving. Qed. Section cmra_monotone. Context {A B : cmraT} (f : A → B) `{!CMRAMonotone f}. Global Instance cmra_monotone_proper : Proper ((≡) ==> (≡)) f := ne_proper _. Lemma includedN_preserving n x y : x ≼{n} y → f x ≼{n} f y. Proof. intros [z ->]. apply cmra_included_includedN, (included_preserving f), cmra_included_l. Qed. Lemma valid_preserving x : ✓ x → ✓ f x. Proof. rewrite !cmra_valid_validN; eauto using validN_preserving. Qed. End cmra_monotone. (** * Transporting a CMRA equality *) Definition cmra_transport {A B : cmraT} (H : A = B) (x : A) : B := eq_rect A id x _ H. Section cmra_transport. Context {A B : cmraT} (H : A = B). Notation T := (cmra_transport H). Global Instance cmra_transport_ne n : Proper (dist n ==> dist n) T. Proof. by intros ???; destruct H. Qed. Global Instance cmra_transport_proper : Proper ((≡) ==> (≡)) T. Proof. by intros ???; destruct H. Qed. Lemma cmra_transport_op x y : T (x ⋅ y) = T x ⋅ T y. Proof. by destruct H. Qed. Lemma cmra_transport_core x : T (core x) = core (T x). Proof. by destruct H. Qed. Lemma cmra_transport_validN n x : ✓{n} T x ↔ ✓{n} x. Proof. by destruct H. Qed. Lemma cmra_transport_valid x : ✓ T x ↔ ✓ x. Proof. by destruct H. Qed. Global Instance cmra_transport_timeless x : Timeless x → Timeless (T x). Proof. by destruct H. Qed. Global Instance cmra_transport_persistent x : Persistent x → Persistent (T x). Proof. by destruct H. Qed. Lemma cmra_transport_updateP (P : A → Prop) (Q : B → Prop) x : x ~~>: P → (∀ y, P y → Q (T y)) → T x ~~>: Q. Proof. destruct H; eauto using cmra_updateP_weaken. Qed. Lemma cmra_transport_updateP' (P : A → Prop) x : x ~~>: P → T x ~~>: λ y, ∃ y', y = cmra_transport H y' ∧ P y'. Proof. eauto using cmra_transport_updateP. Qed. End cmra_transport. (** * Instances *) (** ** Discrete CMRA *) Class RA A `{Equiv A, Core A, Op A, Valid A} := { (* setoids *) ra_op_ne (x : A) : Proper ((≡) ==> (≡)) (op x); ra_core_ne :> Proper ((≡) ==> (≡)) core; ra_validN_ne :> Proper ((≡) ==> impl) valid; (* monoid *) ra_assoc :> Assoc (≡) (⋅); ra_comm :> Comm (≡) (⋅); ra_core_l x : core x ⋅ x ≡ x; ra_core_idemp x : core (core x) ≡ core x; ra_core_preserving x y : x ≼ y → core x ≼ core y; ra_valid_op_l x y : ✓ (x ⋅ y) → ✓ x }. Section discrete. Context {A : cofeT} `{Discrete A}. Context `{Core A, Op A, Valid A} (ra : RA A). Instance discrete_validN : ValidN A := λ n x, ✓ x. Definition discrete_cmra_mixin : CMRAMixin A. Proof. destruct ra; split; unfold Proper, respectful, includedN; try setoid_rewrite <-(timeless_iff _ _); try done. - intros x; split; first done. by move=> /(_ 0). - intros n x y1 y2 ??; exists (y1,y2); split_and?; auto. apply (timeless _), dist_le with n; auto with lia. Qed. Definition discreteR : cmraT := CMRAT (cofe_mixin A) discrete_cmra_mixin. Global Instance discrete_cmra_discrete : CMRADiscrete discreteR. Proof. split. change (Discrete A); apply _. by intros x ?. Qed. End discrete. (** ** CMRA for the unit type *) Section unit. Instance unit_valid : Valid () := λ x, True. Instance unit_core : Core () := λ x, x. Instance unit_op : Op () := λ x y, (). Global Instance unit_empty : Empty () := (). Definition unit_ra : RA (). Proof. by split. Qed. Canonical Structure unitR : cmraT := Eval cbv [unitC discreteR cofe_car] in discreteR unit_ra. Global Instance unit_cmra_unit : CMRAUnit unitR. Global Instance unit_cmra_discrete : CMRADiscrete unitR. Proof. by apply discrete_cmra_discrete. Qed. Global Instance unit_persistent (x : ()) : Persistent x. Proof. done. Qed. End unit. (** ** Product *) Section prod. Context {A B : cmraT}. Instance prod_op : Op (A * B) := λ x y, (x.1 ⋅ y.1, x.2 ⋅ y.2). Global Instance prod_empty `{Empty A, Empty B} : Empty (A * B) := (∅, ∅). Instance prod_core : Core (A * B) := λ x, (core (x.1), core (x.2)). Instance prod_valid : Valid (A * B) := λ x, ✓ x.1 ∧ ✓ x.2. Instance prod_validN : ValidN (A * B) := λ n x, ✓{n} x.1 ∧ ✓{n} x.2. Lemma prod_included (x y : A * B) : x ≼ y ↔ x.1 ≼ y.1 ∧ x.2 ≼ y.2. Proof. split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|]. intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto. Qed. Lemma prod_includedN (x y : A * B) n : x ≼{n} y ↔ x.1 ≼{n} y.1 ∧ x.2 ≼{n} y.2. Proof. split; [intros [z Hz]; split; [exists (z.1)|exists (z.2)]; apply Hz|]. intros [[z1 Hz1] [z2 Hz2]]; exists (z1,z2); split; auto. Qed. Definition prod_cmra_mixin : CMRAMixin (A * B). Proof. split; try apply _. - by intros n x y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2. - by intros n y1 y2 [Hy1 Hy2]; split; rewrite /= ?Hy1 ?Hy2. - by intros n y1 y2 [Hy1 Hy2] [??]; split; rewrite /= -?Hy1 -?Hy2. - intros x; split. + intros [??] n; split; by apply cmra_valid_validN. + intros Hxy; split; apply cmra_valid_validN=> n; apply Hxy. - by intros n x [??]; split; apply cmra_validN_S. - by split; rewrite /= assoc. - by split; rewrite /= comm. - by split; rewrite /= cmra_core_l. - by split; rewrite /= cmra_core_idemp. - intros x y; rewrite !prod_included. by intros [??]; split; apply cmra_core_preserving. - intros n x y [??]; split; simpl in *; eauto using cmra_validN_op_l. - intros n x y1 y2 [??] [??]; simpl in *. destruct (cmra_extend n (x.1) (y1.1) (y2.1)) as (z1&?&?&?); auto. destruct (cmra_extend n (x.2) (y1.2) (y2.2)) as (z2&?&?&?); auto. by exists ((z1.1,z2.1),(z1.2,z2.2)). Qed. Canonical Structure prodR : cmraT := CMRAT prod_cofe_mixin prod_cmra_mixin. Global Instance prod_cmra_unit `{Empty A, Empty B} : CMRAUnit A → CMRAUnit B → CMRAUnit prodR. Proof. split. - split; apply cmra_unit_valid. - by split; rewrite /=left_id. - by intros ? [??]; split; apply (timeless _). Qed. Global Instance prod_cmra_discrete : CMRADiscrete A → CMRADiscrete B → CMRADiscrete prodR. Proof. split. apply _. by intros ? []; split; apply cmra_discrete_valid. Qed. Global Instance pair_persistent x y : Persistent x → Persistent y → Persistent (x,y). Proof. by split. Qed. Lemma pair_split `{CMRAUnit A, CMRAUnit B} (x : A) (y : B) : (x, y) ≡ (x, ∅) ⋅ (∅, y). Proof. constructor; by rewrite /= ?left_id ?right_id. Qed. Lemma prod_update x y : x.1 ~~> y.1 → x.2 ~~> y.2 → x ~~> y. Proof. intros ?? n z [??]; split; simpl in *; auto. Qed. Lemma prod_updateP P1 P2 (Q : A * B → Prop) x : x.1 ~~>: P1 → x.2 ~~>: P2 → (∀ a b, P1 a → P2 b → Q (a,b)) → x ~~>: Q. Proof. intros Hx1 Hx2 HP n z [??]; simpl in *. destruct (Hx1 n (z.1)) as (a&?&?), (Hx2 n (z.2)) as (b&?&?); auto. exists (a,b); repeat split; auto. Qed. Lemma prod_updateP' P1 P2 x : x.1 ~~>: P1 → x.2 ~~>: P2 → x ~~>: λ y, P1 (y.1) ∧ P2 (y.2). Proof. eauto using prod_updateP. Qed. Global Instance prod_local_update (LA : A → A) `{!LocalUpdate LvA LA} (LB : B → B) `{!LocalUpdate LvB LB} : LocalUpdate (λ x, LvA (x.1) ∧ LvB (x.2)) (prod_map LA LB). Proof. constructor. - intros n x y [??]; constructor; simpl; by apply local_update_ne. - intros n ?? [??] [??]; constructor; simpl in *; eapply local_updateN; eauto. Qed. End prod. Arguments prodR : clear implicits. Instance prod_map_cmra_monotone {A A' B B' : cmraT} (f : A → A') (g : B → B') : CMRAMonotone f → CMRAMonotone g → CMRAMonotone (prod_map f g). Proof. split; first apply _. - by intros n x [??]; split; simpl; apply validN_preserving. - intros x y; rewrite !prod_included=> -[??] /=. by split; apply included_preserving. Qed. (** Functors *) Structure rFunctor := RFunctor { rFunctor_car : cofeT → cofeT -> cmraT; rFunctor_map {A1 A2 B1 B2} : ((A2 -n> A1) * (B1 -n> B2)) → rFunctor_car A1 B1 -n> rFunctor_car A2 B2; rFunctor_ne A1 A2 B1 B2 n : Proper (dist n ==> dist n) (@rFunctor_map A1 A2 B1 B2); rFunctor_id {A B} (x : rFunctor_car A B) : rFunctor_map (cid,cid) x ≡ x; rFunctor_compose {A1 A2 A3 B1 B2 B3} (f : A2 -n> A1) (g : A3 -n> A2) (f' : B1 -n> B2) (g' : B2 -n> B3) x : rFunctor_map (f◎g, g'◎f') x ≡ rFunctor_map (g,g') (rFunctor_map (f,f') x); rFunctor_mono {A1 A2 B1 B2} (fg : (A2 -n> A1) * (B1 -n> B2)) : CMRAMonotone (rFunctor_map fg) }. Existing Instances rFunctor_ne rFunctor_mono. Instance: Params (@rFunctor_map) 5. Class rFunctorContractive (F : rFunctor) := rFunctor_contractive A1 A2 B1 B2 :> Contractive (@rFunctor_map F A1 A2 B1 B2). Definition rFunctor_diag (F: rFunctor) (A: cofeT) : cmraT := rFunctor_car F A A. Coercion rFunctor_diag : rFunctor >-> Funclass. Program Definition constRF (B : cmraT) : rFunctor := {| rFunctor_car A1 A2 := B; rFunctor_map A1 A2 B1 B2 f := cid |}. Solve Obligations with done. Instance constRF_contractive B : rFunctorContractive (constRF B). Proof. rewrite /rFunctorContractive; apply _. Qed. Program Definition prodRF (F1 F2 : rFunctor) : rFunctor := {| rFunctor_car A B := prodR (rFunctor_car F1 A B) (rFunctor_car F2 A B); rFunctor_map A1 A2 B1 B2 fg := prodC_map (rFunctor_map F1 fg) (rFunctor_map F2 fg) |}. Next Obligation. intros F1 F2 A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply rFunctor_ne. Qed. Next Obligation. by intros F1 F2 A B [??]; rewrite /= !rFunctor_id. Qed. Next Obligation. intros F1 F2 A1 A2 A3 B1 B2 B3 f g f' g' [??]; simpl. by rewrite !rFunctor_compose. Qed. Instance prodRF_contractive F1 F2 : rFunctorContractive F1 → rFunctorContractive F2 → rFunctorContractive (prodRF F1 F2). Proof. intros ?? A1 A2 B1 B2 n ???; by apply prodC_map_ne; apply rFunctor_contractive. Qed.