(* Copyright (c) 2012-2015, Robbert Krebbers. *) (* This file is distributed under the terms of the BSD license. *) (** This file collects definitions and theorems on collections. Most importantly, it implements some tactics to automatically solve goals involving collections. *) From iris.prelude Require Export base tactics orders. Instance collection_disjoint `{ElemOf A C} : Disjoint C := λ X Y, ∀ x, x ∈ X → x ∈ Y → False. Instance collection_subseteq `{ElemOf A C} : SubsetEq C := λ X Y, ∀ x, x ∈ X → x ∈ Y. Typeclasses Opaque collection_disjoint collection_subseteq. (** * Basic theorems *) Section simple_collection. Context `{SimpleCollection A C}. Implicit Types x y : A. Implicit Types X Y : C. Lemma elem_of_empty x : x ∈ ∅ ↔ False. Proof. split. apply not_elem_of_empty. done. Qed. Lemma elem_of_union_l x X Y : x ∈ X → x ∈ X ∪ Y. Proof. intros. apply elem_of_union. auto. Qed. Lemma elem_of_union_r x X Y : x ∈ Y → x ∈ X ∪ Y. Proof. intros. apply elem_of_union. auto. Qed. Global Instance: EmptySpec C. Proof. firstorder auto. Qed. Global Instance: JoinSemiLattice C. Proof. firstorder auto. Qed. Global Instance: AntiSymm (≡) (@collection_subseteq A C _). Proof. done. Qed. Lemma elem_of_subseteq X Y : X ⊆ Y ↔ ∀ x, x ∈ X → x ∈ Y. Proof. done. Qed. Lemma elem_of_equiv X Y : X ≡ Y ↔ ∀ x, x ∈ X ↔ x ∈ Y. Proof. firstorder. Qed. Lemma elem_of_equiv_alt X Y : X ≡ Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X). Proof. firstorder. Qed. Lemma elem_of_equiv_empty X : X ≡ ∅ ↔ ∀ x, x ∉ X. Proof. firstorder. Qed. Lemma elem_of_disjoint X Y : X ⊥ Y ↔ ∀ x, x ∈ X → x ∈ Y → False. Proof. done. Qed. Global Instance disjoint_sym : Symmetric (@disjoint C _). Proof. intros ??. rewrite !elem_of_disjoint; naive_solver. Qed. Lemma disjoint_empty_l Y : ∅ ⊥ Y. Proof. rewrite elem_of_disjoint; intros x; by rewrite elem_of_empty. Qed. Lemma disjoint_empty_r X : X ⊥ ∅. Proof. rewrite (symmetry_iff _); apply disjoint_empty_l. Qed. Lemma disjoint_singleton_l x Y : {[ x ]} ⊥ Y ↔ x ∉ Y. Proof. rewrite elem_of_disjoint; setoid_rewrite elem_of_singleton; naive_solver. Qed. Lemma disjoint_singleton_r y X : X ⊥ {[ y ]} ↔ y ∉ X. Proof. rewrite (symmetry_iff (⊥)). apply disjoint_singleton_l. Qed. Lemma disjoint_union_l X1 X2 Y : X1 ∪ X2 ⊥ Y ↔ X1 ⊥ Y ∧ X2 ⊥ Y. Proof. rewrite !elem_of_disjoint; setoid_rewrite elem_of_union; naive_solver. Qed. Lemma disjoint_union_r X Y1 Y2 : X ⊥ Y1 ∪ Y2 ↔ X ⊥ Y1 ∧ X ⊥ Y2. Proof. rewrite !(symmetry_iff (⊥) X). apply disjoint_union_l. Qed. Lemma collection_positive_l X Y : X ∪ Y ≡ ∅ → X ≡ ∅. Proof. rewrite !elem_of_equiv_empty. setoid_rewrite elem_of_union. naive_solver. Qed. Lemma collection_positive_l_alt X Y : X ≢ ∅ → X ∪ Y ≢ ∅. Proof. eauto using collection_positive_l. Qed. Lemma elem_of_singleton_1 x y : x ∈ {[y]} → x = y. Proof. by rewrite elem_of_singleton. Qed. Lemma elem_of_singleton_2 x y : x = y → x ∈ {[y]}. Proof. by rewrite elem_of_singleton. Qed. Lemma elem_of_subseteq_singleton x X : x ∈ X ↔ {[ x ]} ⊆ X. Proof. split. - intros ??. rewrite elem_of_singleton. by intros ->. - intros Ex. by apply (Ex x), elem_of_singleton. Qed. Global Instance singleton_proper : Proper ((=) ==> (≡)) (singleton (B:=C)). Proof. by repeat intro; subst. Qed. Global Instance elem_of_proper : Proper ((=) ==> (≡) ==> iff) (@elem_of A C _) | 5. Proof. intros ???; subst. firstorder. Qed. Global Instance disjoint_proper: Proper ((≡) ==> (≡) ==> iff) (@disjoint C _). Proof. intros ??????. by rewrite !elem_of_disjoint; setoid_subst. Qed. Lemma elem_of_union_list Xs x : x ∈ ⋃ Xs ↔ ∃ X, X ∈ Xs ∧ x ∈ X. Proof. split. - induction Xs; simpl; intros HXs; [by apply elem_of_empty in HXs|]. setoid_rewrite elem_of_cons. apply elem_of_union in HXs. naive_solver. - intros [X []]. induction 1; simpl; [by apply elem_of_union_l |]. intros. apply elem_of_union_r; auto. Qed. Lemma non_empty_singleton x : ({[ x ]} : C) ≢ ∅. Proof. intros [E _]. by apply (elem_of_empty x), E, elem_of_singleton. Qed. Lemma not_elem_of_singleton x y : x ∉ {[ y ]} ↔ x ≠ y. Proof. by rewrite elem_of_singleton. Qed. Lemma not_elem_of_union x X Y : x ∉ X ∪ Y ↔ x ∉ X ∧ x ∉ Y. Proof. rewrite elem_of_union. tauto. Qed. Section leibniz. Context `{!LeibnizEquiv C}. Lemma elem_of_equiv_L X Y : X = Y ↔ ∀ x, x ∈ X ↔ x ∈ Y. Proof. unfold_leibniz. apply elem_of_equiv. Qed. Lemma elem_of_equiv_alt_L X Y : X = Y ↔ (∀ x, x ∈ X → x ∈ Y) ∧ (∀ x, x ∈ Y → x ∈ X). Proof. unfold_leibniz. apply elem_of_equiv_alt. Qed. Lemma elem_of_equiv_empty_L X : X = ∅ ↔ ∀ x, x ∉ X. Proof. unfold_leibniz. apply elem_of_equiv_empty. Qed. Lemma collection_positive_l_L X Y : X ∪ Y = ∅ → X = ∅. Proof. unfold_leibniz. apply collection_positive_l. Qed. Lemma collection_positive_l_alt_L X Y : X ≠ ∅ → X ∪ Y ≠ ∅. Proof. unfold_leibniz. apply collection_positive_l_alt. Qed. Lemma non_empty_singleton_L x : {[ x ]} ≠ ∅. Proof. unfold_leibniz. apply non_empty_singleton. Qed. End leibniz. Section dec. Context `{∀ X Y : C, Decision (X ⊆ Y)}. Global Instance elem_of_dec_slow (x : A) (X : C) : Decision (x ∈ X) | 100. Proof. refine (cast_if (decide_rel (⊆) {[ x ]} X)); by rewrite elem_of_subseteq_singleton. Defined. End dec. End simple_collection. (** * Tactics *) (** The tactic [set_unfold] transforms all occurrences of [(∪)], [(∩)], [(∖)], [(<\$>)], [∅], [{[_]}], [(≡)], and [(⊆)] into logically equivalent propositions involving just [∈]. For example, [A → x ∈ X ∪ ∅] becomes [A → x ∈ X ∨ False]. This transformation is implemented using type classes instead of [rewrite]ing to ensure that we traverse each term at most once. *) Class SetUnfold (P Q : Prop) := { set_unfold : P ↔ Q }. Arguments set_unfold _ _ {_}. Hint Mode SetUnfold + - : typeclass_instances. Class SetUnfoldSimpl (P Q : Prop) := { set_unfold_simpl : SetUnfold P Q }. Hint Extern 0 (SetUnfoldSimpl _ _) => csimpl; constructor : typeclass_instances. Instance set_unfold_default P : SetUnfold P P | 1000. done. Qed. Definition set_unfold_1 `{SetUnfold P Q} : P → Q := proj1 (set_unfold P Q). Definition set_unfold_2 `{SetUnfold P Q} : Q → P := proj2 (set_unfold P Q). Lemma set_unfold_impl P Q P' Q' : SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P → Q) (P' → Q'). Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed. Lemma set_unfold_and P Q P' Q' : SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ∧ Q) (P' ∧ Q'). Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed. Lemma set_unfold_or P Q P' Q' : SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ∨ Q) (P' ∨ Q'). Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed. Lemma set_unfold_iff P Q P' Q' : SetUnfold P P' → SetUnfold Q Q' → SetUnfold (P ↔ Q) (P' ↔ Q'). Proof. constructor. by rewrite (set_unfold P P'), (set_unfold Q Q'). Qed. Lemma set_unfold_not P P' : SetUnfold P P' → SetUnfold (¬P) (¬P'). Proof. constructor. by rewrite (set_unfold P P'). Qed. Lemma set_unfold_forall {A} (P P' : A → Prop) : (∀ x, SetUnfold (P x) (P' x)) → SetUnfold (∀ x, P x) (∀ x, P' x). Proof. constructor. naive_solver. Qed. Lemma set_unfold_exist {A} (P P' : A → Prop) : (∀ x, SetUnfold (P x) (P' x)) → SetUnfold (∃ x, P x) (∃ x, P' x). Proof. constructor. naive_solver. Qed. (* Avoid too eager application of the above instances (and thus too eager unfolding of type class transparent definitions). *) Hint Extern 0 (SetUnfold (_ → _) _) => class_apply set_unfold_impl : typeclass_instances. Hint Extern 0 (SetUnfold (_ ∧ _) _) => class_apply set_unfold_and : typeclass_instances. Hint Extern 0 (SetUnfold (_ ∨ _) _) => class_apply set_unfold_or : typeclass_instances. Hint Extern 0 (SetUnfold (_ ↔ _) _) => class_apply set_unfold_iff : typeclass_instances. Hint Extern 0 (SetUnfold (¬ _) _) => class_apply set_unfold_not : typeclass_instances. Hint Extern 1 (SetUnfold (∀ _, _) _) => class_apply set_unfold_forall : typeclass_instances. Hint Extern 0 (SetUnfold (∃ _, _) _) => class_apply set_unfold_exist : typeclass_instances. Section set_unfold_simple. Context `{SimpleCollection A C}. Implicit Types x y : A. Implicit Types X Y : C. Global Instance set_unfold_empty x : SetUnfold (x ∈ ∅) False. Proof. constructor; apply elem_of_empty. Qed. Global Instance set_unfold_singleton x y : SetUnfold (x ∈ {[ y ]}) (x = y). Proof. constructor; apply elem_of_singleton. Qed. Global Instance set_unfold_union x X Y P Q : SetUnfold (x ∈ X) P → SetUnfold (x ∈ Y) Q → SetUnfold (x ∈ X ∪ Y) (P ∨ Q). Proof. intros ??; constructor. by rewrite elem_of_union, (set_unfold (x ∈ X) P), (set_unfold (x ∈ Y) Q). Qed. Global Instance set_unfold_equiv_same X : SetUnfold (X ≡ X) True | 1. Proof. done. Qed. Global Instance set_unfold_equiv_empty_l X (P : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → SetUnfold (∅ ≡ X) (∀ x, ¬P x) | 5. Proof. intros ?; constructor. rewrite (symmetry_iff equiv), elem_of_equiv_empty; naive_solver. Qed. Global Instance set_unfold_equiv_empty_r (P : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → SetUnfold (X ≡ ∅) (∀ x, ¬P x) | 5. Proof. constructor. rewrite elem_of_equiv_empty; naive_solver. Qed. Global Instance set_unfold_equiv (P Q : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) → SetUnfold (X ≡ Y) (∀ x, P x ↔ Q x) | 10. Proof. constructor. rewrite elem_of_equiv; naive_solver. Qed. Global Instance set_unfold_subseteq (P Q : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) → SetUnfold (X ⊆ Y) (∀ x, P x → Q x). Proof. constructor. rewrite elem_of_subseteq; naive_solver. Qed. Global Instance set_unfold_subset (P Q : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) → SetUnfold (X ⊂ Y) ((∀ x, P x → Q x) ∧ ¬∀ x, P x ↔ Q x). Proof. constructor. rewrite subset_spec, elem_of_subseteq, elem_of_equiv. repeat f_equiv; naive_solver. Qed. Global Instance set_unfold_disjoint (P Q : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) → SetUnfold (X ⊥ Y) (∀ x, P x → Q x → False). Proof. constructor. rewrite elem_of_disjoint. naive_solver. Qed. Context `{!LeibnizEquiv C}. Global Instance set_unfold_equiv_same_L X : SetUnfold (X = X) True | 1. Proof. done. Qed. Global Instance set_unfold_equiv_empty_l_L X (P : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → SetUnfold (∅ = X) (∀ x, ¬P x) | 5. Proof. constructor. rewrite (symmetry_iff eq), elem_of_equiv_empty_L; naive_solver. Qed. Global Instance set_unfold_equiv_empty_r_L (P : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → SetUnfold (X = ∅) (∀ x, ¬P x) | 5. Proof. constructor. rewrite elem_of_equiv_empty_L; naive_solver. Qed. Global Instance set_unfold_equiv_L (P Q : A → Prop) : (∀ x, SetUnfold (x ∈ X) (P x)) → (∀ x, SetUnfold (x ∈ Y) (Q x)) → SetUnfold (X = Y) (∀ x, P x ↔ Q x) | 10. Proof. constructor. rewrite elem_of_equiv_L; naive_solver. Qed. End set_unfold_simple. Section set_unfold. Context `{Collection A C}. Implicit Types x y : A. Implicit Types X Y : C. Global Instance set_unfold_intersection x X Y P Q : SetUnfold (x ∈ X) P → SetUnfold (x ∈ Y) Q → SetUnfold (x ∈ X ∩ Y) (P ∧ Q). Proof. intros ??; constructor. by rewrite elem_of_intersection, (set_unfold (x ∈ X) P), (set_unfold (x ∈ Y) Q). Qed. Global Instance set_unfold_difference x X Y P Q : SetUnfold (x ∈ X) P → SetUnfold (x ∈ Y) Q → SetUnfold (x ∈ X ∖ Y) (P ∧ ¬Q). Proof. intros ??; constructor. by rewrite elem_of_difference, (set_unfold (x ∈ X) P), (set_unfold (x ∈ Y) Q). Qed. End set_unfold. Section set_unfold_monad. Context `{CollectionMonad M} {A : Type}. Implicit Types x y : A. Global Instance set_unfold_ret x y : SetUnfold (x ∈ mret y) (x = y). Proof. constructor; apply elem_of_ret. Qed. Global Instance set_unfold_bind {B} (f : A → M B) X (P Q : A → Prop) : (∀ y, SetUnfold (y ∈ X) (P y)) → (∀ y, SetUnfold (x ∈ f y) (Q y)) → SetUnfold (x ∈ X ≫= f) (∃ y, Q y ∧ P y). Proof. constructor. rewrite elem_of_bind; naive_solver. Qed. Global Instance set_unfold_fmap {B} (f : A → B) X (P : A → Prop) : (∀ y, SetUnfold (y ∈ X) (P y)) → SetUnfold (x ∈ f <\$> X) (∃ y, x = f y ∧ P y). Proof. constructor. rewrite elem_of_fmap; naive_solver. Qed. Global Instance set_unfold_join (X : M (M A)) (P : M A → Prop) : (∀ Y, SetUnfold (Y ∈ X) (P Y)) → SetUnfold (x ∈ mjoin X) (∃ Y, x ∈ Y ∧ P Y). Proof. constructor. rewrite elem_of_join; naive_solver. Qed. End set_unfold_monad. Ltac set_unfold := let rec unfold_hyps := try match goal with | H : _ |- _ => apply set_unfold_1 in H; revert H; first [unfold_hyps; intros H | intros H; fail 1] end in apply set_unfold_2; unfold_hyps; csimpl in *. (** Since [firstorder] fails or loops on very small goals generated by [set_solver] already. We use the [naive_solver] tactic as a substitute. This tactic either fails or proves the goal. *) Tactic Notation "set_solver" "by" tactic3(tac) := try fast_done; intros; setoid_subst; set_unfold; intros; setoid_subst; try match goal with |- _ ∈ _ => apply dec_stable end; naive_solver tac. Tactic Notation "set_solver" "-" hyp_list(Hs) "by" tactic3(tac) := clear Hs; set_solver by tac. Tactic Notation "set_solver" "+" hyp_list(Hs) "by" tactic3(tac) := clear -Hs; set_solver by tac. Tactic Notation "set_solver" := set_solver by idtac. Tactic Notation "set_solver" "-" hyp_list(Hs) := clear Hs; set_solver. Tactic Notation "set_solver" "+" hyp_list(Hs) := clear -Hs; set_solver. Hint Extern 1000 (_ ∉ _) => set_solver : set_solver. Hint Extern 1000 (_ ∈ _) => set_solver : set_solver. Hint Extern 1000 (_ ⊆ _) => set_solver : set_solver. (** * Conversion of option and list *) Definition of_option `{Singleton A C, Empty C} (mx : option A) : C := match mx with None => ∅ | Some x => {[ x ]} end. Fixpoint of_list `{Singleton A C, Empty C, Union C} (l : list A) : C := match l with [] => ∅ | x :: l => {[ x ]} ∪ of_list l end. Section of_option_list. Context `{SimpleCollection A C}. Lemma elem_of_of_option (x : A) mx: x ∈ of_option mx ↔ mx = Some x. Proof. destruct mx; set_solver. Qed. Lemma elem_of_of_list (x : A) l : x ∈ of_list l ↔ x ∈ l. Proof. split. - induction l; simpl; [by rewrite elem_of_empty|]. rewrite elem_of_union,elem_of_singleton; intros [->|?]; constructor; auto. - induction 1; simpl; rewrite elem_of_union, elem_of_singleton; auto. Qed. Global Instance set_unfold_of_option (mx : option A) x : SetUnfold (x ∈ of_option mx) (mx = Some x). Proof. constructor; apply elem_of_of_option. Qed. Global Instance set_unfold_of_list (l : list A) x P : SetUnfold (x ∈ l) P → SetUnfold (x ∈ of_list l) P. Proof. constructor. by rewrite elem_of_of_list, (set_unfold (x ∈ l) P). Qed. End of_option_list. Section list_unfold. Context {A : Type}. Implicit Types x : A. Implicit Types l : list A. Global Instance set_unfold_nil x : SetUnfold (x ∈ []) False. Proof. constructor; apply elem_of_nil. Qed. Global Instance set_unfold_cons x y l P : SetUnfold (x ∈ l) P → SetUnfold (x ∈ y :: l) (x = y ∨ P). Proof. constructor. by rewrite elem_of_cons, (set_unfold (x ∈ l) P). Qed. Global Instance set_unfold_app x l k P Q : SetUnfold (x ∈ l) P → SetUnfold (x ∈ k) Q → SetUnfold (x ∈ l ++ k) (P ∨ Q). Proof. intros ??; constructor. by rewrite elem_of_app, (set_unfold (x ∈ l) P), (set_unfold (x ∈ k) Q). Qed. Global Instance set_unfold_included l k (P Q : A → Prop) : (∀ x, SetUnfold (x ∈ l) (P x)) → (∀ x, SetUnfold (x ∈ k) (Q x)) → SetUnfold (l `included` k) (∀ x, P x → Q x). Proof. by constructor; unfold included; set_unfold. Qed. End list_unfold. (** * Guard *) Global Instance collection_guard `{CollectionMonad M} : MGuard M := λ P dec A x, match dec with left H => x H | _ => ∅ end. Section collection_monad_base. Context `{CollectionMonad M}. Lemma elem_of_guard `{Decision P} {A} (x : A) (X : M A) : x ∈ guard P; X ↔ P ∧ x ∈ X. Proof. unfold mguard, collection_guard; simpl; case_match; rewrite ?elem_of_empty; naive_solver. Qed. Lemma elem_of_guard_2 `{Decision P} {A} (x : A) (X : M A) : P → x ∈ X → x ∈ guard P; X. Proof. by rewrite elem_of_guard. Qed. Lemma guard_empty `{Decision P} {A} (X : M A) : guard P; X ≡ ∅ ↔ ¬P ∨ X ≡ ∅. Proof. rewrite !elem_of_equiv_empty; setoid_rewrite elem_of_guard. destruct (decide P); naive_solver. Qed. Global Instance set_unfold_guard `{Decision P} {A} (x : A) X Q : SetUnfold (x ∈ X) Q → SetUnfold (x ∈ guard P; X) (P ∧ Q). Proof. constructor. by rewrite elem_of_guard, (set_unfold (x ∈ X) Q). Qed. Lemma bind_empty {A B} (f : A → M B) X : X ≫= f ≡ ∅ ↔ X ≡ ∅ ∨ ∀ x, x ∈ X → f x ≡ ∅. Proof. set_solver. Qed. End collection_monad_base. (** * More theorems *) Section collection. Context `{Collection A C}. Implicit Types X Y : C. Global Instance: Lattice C. Proof. split. apply _. firstorder auto. set_solver. Qed. Global Instance difference_proper : Proper ((≡) ==> (≡) ==> (≡)) (@difference C _). Proof. intros X1 X2 HX Y1 Y2 HY; apply elem_of_equiv; intros x. by rewrite !elem_of_difference, HX, HY. Qed. Lemma non_empty_inhabited x X : x ∈ X → X ≢ ∅. Proof. set_solver. Qed. Lemma intersection_singletons x : ({[x]} : C) ∩ {[x]} ≡ {[x]}. Proof. set_solver. Qed. Lemma difference_twice X Y : (X ∖ Y) ∖ Y ≡ X ∖ Y. Proof. set_solver. Qed. Lemma subseteq_empty_difference X Y : X ⊆ Y → X ∖ Y ≡ ∅. Proof. set_solver. Qed. Lemma difference_diag X : X ∖ X ≡ ∅. Proof. set_solver. Qed. Lemma difference_union_distr_l X Y Z : (X ∪ Y) ∖ Z ≡ X ∖ Z ∪ Y ∖ Z. Proof. set_solver. Qed. Lemma difference_union_distr_r X Y Z : Z ∖ (X ∪ Y) ≡ (Z ∖ X) ∩ (Z ∖ Y). Proof. set_solver. Qed. Lemma difference_intersection_distr_l X Y Z : (X ∩ Y) ∖ Z ≡ X ∖ Z ∩ Y ∖ Z. Proof. set_solver. Qed. Lemma disjoint_union_difference X Y : X ⊥ Y → (X ∪ Y) ∖ X ≡ Y. Proof. set_solver. Qed. Section leibniz. Context `{!LeibnizEquiv C}. Lemma intersection_singletons_L x : {[x]} ∩ {[x]} = {[x]}. Proof. unfold_leibniz. apply intersection_singletons. Qed. Lemma difference_twice_L X Y : (X ∖ Y) ∖ Y = X ∖ Y. Proof. unfold_leibniz. apply difference_twice. Qed. Lemma subseteq_empty_difference_L X Y : X ⊆ Y → X ∖ Y = ∅. Proof. unfold_leibniz. apply subseteq_empty_difference. Qed. Lemma difference_diag_L X : X ∖ X = ∅. Proof. unfold_leibniz. apply difference_diag. Qed. Lemma difference_union_distr_l_L X Y Z : (X ∪ Y) ∖ Z = X ∖ Z ∪ Y ∖ Z. Proof. unfold_leibniz. apply difference_union_distr_l. Qed. Lemma difference_union_distr_r_L X Y Z : Z ∖ (X ∪ Y) = (Z ∖ X) ∩ (Z ∖ Y). Proof. unfold_leibniz. apply difference_union_distr_r. Qed. Lemma difference_intersection_distr_l_L X Y Z : (X ∩ Y) ∖ Z = X ∖ Z ∩ Y ∖ Z. Proof. unfold_leibniz. apply difference_intersection_distr_l. Qed. Lemma disjoint_union_difference_L X Y : X ⊥ Y → (X ∪ Y) ∖ X = Y. Proof. unfold_leibniz. apply disjoint_union_difference. Qed. End leibniz. Section dec. Context `{∀ (x : A) (X : C), Decision (x ∈ X)}. Lemma not_elem_of_intersection x X Y : x ∉ X ∩ Y ↔ x ∉ X ∨ x ∉ Y. Proof. rewrite elem_of_intersection. destruct (decide (x ∈ X)); tauto. Qed. Lemma not_elem_of_difference x X Y : x ∉ X ∖ Y ↔ x ∉ X ∨ x ∈ Y. Proof. rewrite elem_of_difference. destruct (decide (x ∈ Y)); tauto. Qed. Lemma union_difference X Y : X ⊆ Y → Y ≡ X ∪ Y ∖ X. Proof. split; intros x; rewrite !elem_of_union, elem_of_difference; [|intuition]. destruct (decide (x ∈ X)); intuition. Qed. Lemma non_empty_difference X Y : X ⊂ Y → Y ∖ X ≢ ∅. Proof. intros [HXY1 HXY2] Hdiff. destruct HXY2. set_solver. Qed. Lemma empty_difference_subseteq X Y : X ∖ Y ≡ ∅ → X ⊆ Y. Proof. set_solver. Qed. Context `{!LeibnizEquiv C}. Lemma union_difference_L X Y : X ⊆ Y → Y = X ∪ Y ∖ X. Proof. unfold_leibniz. apply union_difference. Qed. Lemma non_empty_difference_L X Y : X ⊂ Y → Y ∖ X ≠ ∅. Proof. unfold_leibniz. apply non_empty_difference. Qed. Lemma empty_difference_subseteq_L X Y : X ∖ Y = ∅ → X ⊆ Y. Proof. unfold_leibniz. apply empty_difference_subseteq. Qed. End dec. End collection. (** * Sets without duplicates up to an equivalence *) Section NoDup. Context `{SimpleCollection A B} (R : relation A) `{!Equivalence R}. Definition elem_of_upto (x : A) (X : B) := ∃ y, y ∈ X ∧ R x y. Definition set_NoDup (X : B) := ∀ x y, x ∈ X → y ∈ X → R x y → x = y. Global Instance: Proper ((≡) ==> iff) (elem_of_upto x). Proof. intros ??? E. unfold elem_of_upto. by setoid_rewrite E. Qed. Global Instance: Proper (R ==> (≡) ==> iff) elem_of_upto. Proof. intros ?? E1 ?? E2. split; intros [z [??]]; exists z. - rewrite <-E1, <-E2; intuition. - rewrite E1, E2; intuition. Qed. Global Instance: Proper ((≡) ==> iff) set_NoDup. Proof. firstorder. Qed. Lemma elem_of_upto_elem_of x X : x ∈ X → elem_of_upto x X. Proof. unfold elem_of_upto. set_solver. Qed. Lemma elem_of_upto_empty x : ¬elem_of_upto x ∅. Proof. unfold elem_of_upto. set_solver. Qed. Lemma elem_of_upto_singleton x y : elem_of_upto x {[ y ]} ↔ R x y. Proof. unfold elem_of_upto. set_solver. Qed. Lemma elem_of_upto_union X Y x : elem_of_upto x (X ∪ Y) ↔ elem_of_upto x X ∨ elem_of_upto x Y. Proof. unfold elem_of_upto. set_solver. Qed. Lemma not_elem_of_upto x X : ¬elem_of_upto x X → ∀ y, y ∈ X → ¬R x y. Proof. unfold elem_of_upto. set_solver. Qed. Lemma set_NoDup_empty: set_NoDup ∅. Proof. unfold set_NoDup. set_solver. Qed. Lemma set_NoDup_add x X : ¬elem_of_upto x X → set_NoDup X → set_NoDup ({[ x ]} ∪ X). Proof. unfold set_NoDup, elem_of_upto. set_solver. Qed. Lemma set_NoDup_inv_add x X : x ∉ X → set_NoDup ({[ x ]} ∪ X) → ¬elem_of_upto x X. Proof. intros Hin Hnodup [y [??]]. rewrite (Hnodup x y) in Hin; set_solver. Qed. Lemma set_NoDup_inv_union_l X Y : set_NoDup (X ∪ Y) → set_NoDup X. Proof. unfold set_NoDup. set_solver. Qed. Lemma set_NoDup_inv_union_r X Y : set_NoDup (X ∪ Y) → set_NoDup Y. Proof. unfold set_NoDup. set_solver. Qed. End NoDup. (** * Quantifiers *) Section quantifiers. Context `{SimpleCollection A B} (P : A → Prop). Definition set_Forall X := ∀ x, x ∈ X → P x. Definition set_Exists X := ∃ x, x ∈ X ∧ P x. Lemma set_Forall_empty : set_Forall ∅. Proof. unfold set_Forall. set_solver. Qed. Lemma set_Forall_singleton x : set_Forall {[ x ]} ↔ P x. Proof. unfold set_Forall. set_solver. Qed. Lemma set_Forall_union X Y : set_Forall X → set_Forall Y → set_Forall (X ∪ Y). Proof. unfold set_Forall. set_solver. Qed. Lemma set_Forall_union_inv_1 X Y : set_Forall (X ∪ Y) → set_Forall X. Proof. unfold set_Forall. set_solver. Qed. Lemma set_Forall_union_inv_2 X Y : set_Forall (X ∪ Y) → set_Forall Y. Proof. unfold set_Forall. set_solver. Qed. Lemma set_Exists_empty : ¬set_Exists ∅. Proof. unfold set_Exists. set_solver. Qed. Lemma set_Exists_singleton x : set_Exists {[ x ]} ↔ P x. Proof. unfold set_Exists. set_solver. Qed. Lemma set_Exists_union_1 X Y : set_Exists X → set_Exists (X ∪ Y). Proof. unfold set_Exists. set_solver. Qed. Lemma set_Exists_union_2 X Y : set_Exists Y → set_Exists (X ∪ Y). Proof. unfold set_Exists. set_solver. Qed. Lemma set_Exists_union_inv X Y : set_Exists (X ∪ Y) → set_Exists X ∨ set_Exists Y. Proof. unfold set_Exists. set_solver. Qed. End quantifiers. Section more_quantifiers. Context `{SimpleCollection A B}. Lemma set_Forall_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X : set_Forall P X → set_Forall Q X. Proof. unfold set_Forall. naive_solver. Qed. Lemma set_Exists_weaken (P Q : A → Prop) (Hweaken : ∀ x, P x → Q x) X : set_Exists P X → set_Exists Q X. Proof. unfold set_Exists. naive_solver. Qed. End more_quantifiers. (** * Fresh elements *) (** We collect some properties on the [fresh] operation. In particular we generalize [fresh] to generate lists of fresh elements. *) Fixpoint fresh_list `{Fresh A C, Union C, Singleton A C} (n : nat) (X : C) : list A := match n with | 0 => [] | S n => let x := fresh X in x :: fresh_list n ({[ x ]} ∪ X) end. Inductive Forall_fresh `{ElemOf A C} (X : C) : list A → Prop := | Forall_fresh_nil : Forall_fresh X [] | Forall_fresh_cons x xs : x ∉ xs → x ∉ X → Forall_fresh X xs → Forall_fresh X (x :: xs). Section fresh. Context `{FreshSpec A C}. Implicit Types X Y : C. Global Instance fresh_proper: Proper ((≡) ==> (=)) (fresh (C:=C)). Proof. intros ???. by apply fresh_proper_alt, elem_of_equiv. Qed. Global Instance fresh_list_proper: Proper ((=) ==> (≡) ==> (=)) (fresh_list (C:=C)). Proof. intros ? n ->. induction n as [|n IH]; intros ?? E; f_equal/=; [by rewrite E|]. apply IH. by rewrite E. Qed. Lemma Forall_fresh_NoDup X xs : Forall_fresh X xs → NoDup xs. Proof. induction 1; by constructor. Qed. Lemma Forall_fresh_elem_of X xs x : Forall_fresh X xs → x ∈ xs → x ∉ X. Proof. intros HX; revert x; rewrite <-Forall_forall. by induction HX; constructor. Qed. Lemma Forall_fresh_alt X xs : Forall_fresh X xs ↔ NoDup xs ∧ ∀ x, x ∈ xs → x ∉ X. Proof. split; eauto using Forall_fresh_NoDup, Forall_fresh_elem_of. rewrite <-Forall_forall. intros [Hxs Hxs']. induction Hxs; decompose_Forall_hyps; constructor; auto. Qed. Lemma Forall_fresh_subseteq X Y xs : Forall_fresh X xs → Y ⊆ X → Forall_fresh Y xs. Proof. rewrite !Forall_fresh_alt; set_solver. Qed. Lemma fresh_list_length n X : length (fresh_list n X) = n. Proof. revert X. induction n; simpl; auto. Qed. Lemma fresh_list_is_fresh n X x : x ∈ fresh_list n X → x ∉ X. Proof. revert X. induction n as [|n IH]; intros X; simpl;[by rewrite elem_of_nil|]. rewrite elem_of_cons; intros [->| Hin]; [apply is_fresh|]. apply IH in Hin; set_solver. Qed. Lemma NoDup_fresh_list n X : NoDup (fresh_list n X). Proof. revert X. induction n; simpl; constructor; auto. intros Hin; apply fresh_list_is_fresh in Hin; set_solver. Qed. Lemma Forall_fresh_list X n : Forall_fresh X (fresh_list n X). Proof. rewrite Forall_fresh_alt; eauto using NoDup_fresh_list, fresh_list_is_fresh. Qed. End fresh. (** * Properties of implementations of collections that form a monad *) Section collection_monad. Context `{CollectionMonad M}. Global Instance collection_fmap_mono {A B} : Proper (pointwise_relation _ (=) ==> (⊆) ==> (⊆)) (@fmap M _ A B). Proof. intros f g ? X Y ?; set_solver by eauto. Qed. Global Instance collection_fmap_proper {A B} : Proper (pointwise_relation _ (=) ==> (≡) ==> (≡)) (@fmap M _ A B). Proof. intros f g ? X Y [??]; split; set_solver by eauto. Qed. Global Instance collection_bind_mono {A B} : Proper (((=) ==> (⊆)) ==> (⊆) ==> (⊆)) (@mbind M _ A B). Proof. unfold respectful; intros f g Hfg X Y ?; set_solver. Qed. Global Instance collection_bind_proper {A B} : Proper (((=) ==> (≡)) ==> (≡) ==> (≡)) (@mbind M _ A B). Proof. unfold respectful; intros f g Hfg X Y [??]; split; set_solver. Qed. Global Instance collection_join_mono {A} : Proper ((⊆) ==> (⊆)) (@mjoin M _ A). Proof. intros X Y ?; set_solver. Qed. Global Instance collection_join_proper {A} : Proper ((≡) ==> (≡)) (@mjoin M _ A). Proof. intros X Y [??]; split; set_solver. Qed. Lemma collection_bind_singleton {A B} (f : A → M B) x : {[ x ]} ≫= f ≡ f x. Proof. set_solver. Qed. Lemma collection_guard_True {A} `{Decision P} (X : M A) : P → guard P; X ≡ X. Proof. set_solver. Qed. Lemma collection_fmap_compose {A B C} (f : A → B) (g : B → C) (X : M A) : g ∘ f <\$> X ≡ g <\$> (f <\$> X). Proof. set_solver. Qed. Lemma elem_of_fmap_1 {A B} (f : A → B) (X : M A) (y : B) : y ∈ f <\$> X → ∃ x, y = f x ∧ x ∈ X. Proof. set_solver. Qed. Lemma elem_of_fmap_2 {A B} (f : A → B) (X : M A) (x : A) : x ∈ X → f x ∈ f <\$> X. Proof. set_solver. Qed. Lemma elem_of_fmap_2_alt {A B} (f : A → B) (X : M A) (x : A) (y : B) : x ∈ X → y = f x → y ∈ f <\$> X. Proof. set_solver. Qed. Lemma elem_of_mapM {A B} (f : A → M B) l k : l ∈ mapM f k ↔ Forall2 (λ x y, x ∈ f y) l k. Proof. split. - revert l. induction k; set_solver by eauto. - induction 1; set_solver. Qed. Lemma collection_mapM_length {A B} (f : A → M B) l k : l ∈ mapM f k → length l = length k. Proof. revert l; induction k; set_solver by eauto. Qed. Lemma elem_of_mapM_fmap {A B} (f : A → B) (g : B → M A) l k : Forall (λ x, ∀ y, y ∈ g x → f y = x) l → k ∈ mapM g l → fmap f k = l. Proof. intros Hl. revert k. induction Hl; set_solver. Qed. Lemma elem_of_mapM_Forall {A B} (f : A → M B) (P : B → Prop) l k : l ∈ mapM f k → Forall (λ x, ∀ y, y ∈ f x → P y) k → Forall P l. Proof. rewrite elem_of_mapM. apply Forall2_Forall_l. Qed. Lemma elem_of_mapM_Forall2_l {A B C} (f : A → M B) (P: B → C → Prop) l1 l2 k : l1 ∈ mapM f k → Forall2 (λ x y, ∀ z, z ∈ f x → P z y) k l2 → Forall2 P l1 l2. Proof. rewrite elem_of_mapM. intros Hl1. revert l2. induction Hl1; inversion_clear 1; constructor; auto. Qed. End collection_monad. (** Finite collections *) Definition set_finite `{ElemOf A B} (X : B) := ∃ l : list A, ∀ x, x ∈ X → x ∈ l. Section finite. Context `{SimpleCollection A B}. Global Instance set_finite_subseteq : Proper (flip (⊆) ==> impl) (@set_finite A B _). Proof. intros X Y HX [l Hl]; exists l; set_solver. Qed. Global Instance set_finite_proper : Proper ((≡) ==> iff) (@set_finite A B _). Proof. by intros X Y [??]; split; apply set_finite_subseteq. Qed. Lemma empty_finite : set_finite ∅. Proof. by exists []; intros ?; rewrite elem_of_empty. Qed. Lemma singleton_finite (x : A) : set_finite {[ x ]}. Proof. exists [x]; intros y ->%elem_of_singleton; left. Qed. Lemma union_finite X Y : set_finite X → set_finite Y → set_finite (X ∪ Y). Proof. intros [lX ?] [lY ?]; exists (lX ++ lY); intros x. rewrite elem_of_union, elem_of_app; naive_solver. Qed. Lemma union_finite_inv_l X Y : set_finite (X ∪ Y) → set_finite X. Proof. intros [l ?]; exists l; set_solver. Qed. Lemma union_finite_inv_r X Y : set_finite (X ∪ Y) → set_finite Y. Proof. intros [l ?]; exists l; set_solver. Qed. End finite. Section more_finite. Context `{Collection A B}. Lemma intersection_finite_l X Y : set_finite X → set_finite (X ∩ Y). Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed. Lemma intersection_finite_r X Y : set_finite Y → set_finite (X ∩ Y). Proof. intros [l ?]; exists l; intros x [??]%elem_of_intersection; auto. Qed. Lemma difference_finite X Y : set_finite X → set_finite (X ∖ Y). Proof. intros [l ?]; exists l; intros x [??]%elem_of_difference; auto. Qed. Lemma difference_finite_inv X Y `{∀ x, Decision (x ∈ Y)} : set_finite Y → set_finite (X ∖ Y) → set_finite X. Proof. intros [l ?] [k ?]; exists (l ++ k). intros x ?; destruct (decide (x ∈ Y)); rewrite elem_of_app; set_solver. Qed. End more_finite.