From iris.base_logic Require Export gen_heap. From iris.program_logic Require Export weakestpre lifting. From iris.program_logic Require Import ectx_lifting. From iris.heap_lang Require Export lang. From iris.heap_lang Require Import tactics. From iris.proofmode Require Import tactics. From stdpp Require Import fin_maps. Set Default Proof Using "Type". Import uPred. (** Basic rules for language operations. *) Class heapG Σ := HeapG { heapG_invG : invG Σ; heapG_gen_heapG :> gen_heapG loc val Σ }. Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := { iris_invG := heapG_invG; state_interp := gen_heap_ctx }. Global Opaque iris_invG. (** Override the notations so that scopes and coercions work out *) Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V) (at level 20, q at level 50, format "l ↦{ q } v") : uPred_scope. Notation "l ↦ v" := (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : uPred_scope. Notation "l ↦{ q } -" := (∃ v, l ↦{q} v)%I (at level 20, q at level 50, format "l ↦{ q } -") : uPred_scope. Notation "l ↦ -" := (l ↦{1} -)%I (at level 20) : uPred_scope. (** The tactic [inv_head_step] performs inversion on hypotheses of the shape [head_step]. The tactic will discharge head-reductions starting from values, and simplifies hypothesis related to conversions from and to values, and finite map operations. This tactic is slightly ad-hoc and tuned for proving our lifting lemmas. *) Ltac inv_head_step := repeat match goal with | _ => progress simplify_map_eq/= (* simplify memory stuff *) | H : to_val _ = Some _ |- _ => apply of_to_val in H | H : _ = of_val ?v |- _ => is_var v; destruct v; first[discriminate H|injection H as H] | H : head_step ?e _ _ _ _ |- _ => try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable and can thus better be avoided. *) inversion H; subst; clear H end. Local Hint Extern 0 (atomic _) => solve_atomic. Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _; simpl. Local Hint Constructors head_step. Local Hint Resolve alloc_fresh. Local Hint Resolve to_of_val. Section lifting. Context `{heapG Σ}. Implicit Types P Q : iProp Σ. Implicit Types Φ : val → iProp Σ. Implicit Types efs : list expr. Implicit Types σ : state. (** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *) Lemma wp_bind {E e} K Φ : WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }} ⊢ WP fill K e @ E {{ Φ }}. Proof. exact: wp_ectx_bind. Qed. Lemma wp_bindi {E e} Ki Φ : WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} ⊢ WP fill_item Ki e @ E {{ Φ }}. Proof. exact: weakestpre.wp_bind. Qed. (** Base axioms for core primitives of the language: Stateless reductions *) Lemma wp_fork E e Φ : ▷ Φ (LitV LitUnit) ∗ ▷ WP e {{ _, True }} ⊢ WP Fork e @ E {{ Φ }}. Proof. rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) [e]) //=; eauto. - by rewrite -step_fupd_intro // later_sep -(wp_value _ _ (Lit _)) // right_id. - intros; inv_head_step; eauto. Qed. Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto. Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step. Local Ltac solve_pure_exec := unfold AsRec, IntoVal, AsVal in *; subst; repeat match goal with H : is_Some _ |- _ => destruct H as [??] end; apply det_head_step_pure_exec; [ solve_exec_safe | solve_exec_puredet ]. Global Instance pure_rec f x (erec e1 e2 : expr) `{!AsVal e2, AsRec e1 f x erec, Closed (f :b: x :b: []) erec} : PureExec True (App e1 e2) (subst' x e2 (subst' f e1 erec)). Proof. solve_pure_exec. Qed. Global Instance pure_unop op e v v' `{!IntoVal e v} : PureExec (un_op_eval op v = Some v') (UnOp op e) (of_val v'). Proof. solve_pure_exec. Qed. Global Instance pure_binop op e1 e2 v1 v2 v' `{!IntoVal e1 v1, !IntoVal e2 v2} : PureExec (bin_op_eval op v1 v2 = Some v') (BinOp op e1 e2) (of_val v'). Proof. solve_pure_exec. Qed. Global Instance pure_if_true e1 e2 : PureExec True (If (Lit (LitBool true)) e1 e2) e1. Proof. solve_pure_exec. Qed. Global Instance pure_if_false e1 e2 : PureExec True (If (Lit (LitBool false)) e1 e2) e2. Proof. solve_pure_exec. Qed. Global Instance pure_fst e1 e2 v1 `{!IntoVal e1 v1, !AsVal e2} : PureExec True (Fst (Pair e1 e2)) e1. Proof. solve_pure_exec. Qed. Global Instance pure_snd e1 e2 v2 `{!AsVal e1, !IntoVal e2 v2} : PureExec True (Snd (Pair e1 e2)) e2. Proof. solve_pure_exec. Qed. Global Instance pure_case_inl e0 v e1 e2 `{!IntoVal e0 v} : PureExec True (Case (InjL e0) e1 e2) (App e1 e0). Proof. solve_pure_exec. Qed. Global Instance pure_case_inr e0 v e1 e2 `{!IntoVal e0 v} : PureExec True (Case (InjR e0) e1 e2) (App e2 e0). Proof. solve_pure_exec. Qed. (** Heap *) Lemma wp_alloc E e v : IntoVal e v → {{{ True }}} Alloc e @ E {{{ l, RET LitV (LitLoc l); l ↦ v }}}. Proof. iIntros (<-%of_to_val Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>"; iSplit; first by auto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma wp_load E l q v : {{{ ▷ l ↦{q} v }}} Load (Lit (LitLoc l)) @ E {{{ RET v; l ↦{q} v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma wp_store E l v' e v : IntoVal e v → {{{ ▷ l ↦ v' }}} Store (Lit (LitLoc l)) e @ E {{{ RET LitV LitUnit; l ↦ v }}}. Proof. iIntros (<-%of_to_val Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. Lemma wp_cas_fail E l q v' e1 v1 e2 : IntoVal e1 v1 → AsVal e2 → v' ≠ v1 → {{{ ▷ l ↦{q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ E {{{ RET LitV (LitBool false); l ↦{q} v' }}}. Proof. iIntros (<-%of_to_val [v2 <-%of_to_val] ? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma wp_cas_suc E l e1 v1 e2 v2 : IntoVal e1 v1 → IntoVal e2 v2 → {{{ ▷ l ↦ v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ E {{{ RET LitV (LitBool true); l ↦ v2 }}}. Proof. iIntros (<-%of_to_val <-%of_to_val Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. by iApply "HΦ". Qed. End lifting.