From iris.algebra Require Import auth gmap. From iris.base_logic Require Export gen_heap. From iris.program_logic Require Export weakestpre. From iris.program_logic Require Import ectx_lifting total_ectx_lifting. From iris.heap_lang Require Export lang proph_map. From iris.heap_lang Require Import tactics. From iris.proofmode Require Import tactics. From stdpp Require Import fin_maps. Set Default Proof Using "Type". Class heapG Σ := HeapG { heapG_invG : invG Σ; heapG_gen_heapG :> gen_heapG loc val Σ; heapG_proph_mapG :> proph_mapG proph_id val Σ }. Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := { iris_invG := heapG_invG; state_interp σ κs := (gen_heap_ctx σ.(heap) ∗ proph_map_ctx κs σ.(used_proph_id))%I }. (** Override the notations so that scopes and coercions work out *) Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V) (at level 20, q at level 50, format "l ↦{ q } v") : bi_scope. Notation "l ↦ v" := (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope. Notation "l ↦{ q } -" := (∃ v, l ↦{q} v)%I (at level 20, q at level 50, format "l ↦{ q } -") : bi_scope. Notation "l ↦ -" := (l ↦{1} -)%I (at level 20) : bi_scope. (** The tactic [inv_head_step] performs inversion on hypotheses of the shape [head_step]. The tactic will discharge head-reductions starting from values, and simplifies hypothesis related to conversions from and to values, and finite map operations. This tactic is slightly ad-hoc and tuned for proving our lifting lemmas. *) Ltac inv_head_step := repeat match goal with | _ => progress simplify_map_eq/= (* simplify memory stuff *) | H : to_val _ = Some _ |- _ => apply of_to_val in H | H : head_step ?e _ _ _ _ _ |- _ => try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable and can thus better be avoided. *) inversion H; subst; clear H end. Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl. Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl. (* [simpl apply] is too stupid, so we need extern hints here. *) Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor. Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasSucS. Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasFailS. Local Hint Extern 0 (head_step (Alloc _) _ _ _ _ _) => apply alloc_fresh. Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_id_fresh. Local Hint Resolve to_of_val. Instance into_val_val v : IntoVal (Val v) v. Proof. done. Qed. Instance as_val_val v : AsVal (Val v). Proof. by eexists. Qed. Local Ltac solve_atomic := apply strongly_atomic_atomic, ectx_language_atomic; [inversion 1; naive_solver |apply ectxi_language_sub_redexes_are_values; intros [] **; naive_solver]. Instance alloc_atomic s v : Atomic s (Alloc (Val v)). Proof. solve_atomic. Qed. Instance load_atomic s v : Atomic s (Load (Val v)). Proof. solve_atomic. Qed. Instance store_atomic s v1 v2 : Atomic s (Store (Val v1) (Val v2)). Proof. solve_atomic. Qed. Instance cas_atomic s v0 v1 v2 : Atomic s (CAS (Val v0) (Val v1) (Val v2)). Proof. solve_atomic. Qed. Instance faa_atomic s v1 v2 : Atomic s (FAA (Val v1) (Val v2)). Proof. solve_atomic. Qed. Instance fork_atomic s e : Atomic s (Fork e). Proof. solve_atomic. Qed. Instance skip_atomic s : Atomic s Skip. Proof. solve_atomic. Qed. Instance new_proph_atomic s : Atomic s NewProph. Proof. solve_atomic. Qed. Instance resolve_proph_atomic s v1 v2 : Atomic s (ResolveProph (Val v1) (Val v2)). Proof. solve_atomic. Qed. Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto. Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step. Local Ltac solve_pure_exec := subst; intros ?; apply nsteps_once, pure_head_step_pure_step; constructor; [solve_exec_safe | solve_exec_puredet]. Class AsRecV (v : val) (f x : binder) (erec : expr) := as_recv : v = RecV f x erec. Instance AsRecV_recv f x e : AsRecV (RecV f x e) f x e := eq_refl. Instance AsRecV_recv_locked v f x e : AsRecV v f x e → AsRecV (locked v) f x e. Proof. by unlock. Qed. Instance pure_recc f x (erec : expr) : PureExec True 1 (Rec f x erec) (Val $ RecV f x erec). Proof. solve_pure_exec. Qed. Instance pure_pairc (v1 v2 : val) : PureExec True 1 (Pair (Val v1) (Val v2)) (Val $ PairV v1 v2). Proof. solve_pure_exec. Qed. Instance pure_injlc (v : val) : PureExec True 1 (InjL $ Val v) (Val $ InjLV v). Proof. solve_pure_exec. Qed. Instance pure_injrc (v : val) : PureExec True 1 (InjR $ Val v) (Val $ InjRV v). Proof. solve_pure_exec. Qed. Instance pure_beta f x (erec : expr) (v1 v2 : val) `{AsRecV v1 f x erec} : PureExec True 1 (App (Val v1) (Val v2)) (subst' x v2 (subst' f v1 erec)). Proof. unfold AsRecV in *. solve_pure_exec. Qed. Instance pure_unop op v v' : PureExec (un_op_eval op v = Some v') 1 (UnOp op (Val v)) (Val v'). Proof. solve_pure_exec. Qed. Instance pure_binop op v1 v2 v' : PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op (Val v1) (Val v2)) (Val v'). Proof. solve_pure_exec. Qed. Instance pure_if_true e1 e2 : PureExec True 1 (If (Val $ LitV $ LitBool true) e1 e2) e1. Proof. solve_pure_exec. Qed. Instance pure_if_false e1 e2 : PureExec True 1 (If (Val $ LitV $ LitBool false) e1 e2) e2. Proof. solve_pure_exec. Qed. Instance pure_fst v1 v2 : PureExec True 1 (Fst (Val $ PairV v1 v2)) (Val v1). Proof. solve_pure_exec. Qed. Instance pure_snd v1 v2 : PureExec True 1 (Snd (Val $ PairV v1 v2)) (Val v2). Proof. solve_pure_exec. Qed. Instance pure_case_inl v e1 e2 : PureExec True 1 (Case (Val $ InjLV v) e1 e2) (App e1 (Val v)). Proof. solve_pure_exec. Qed. Instance pure_case_inr v e1 e2 : PureExec True 1 (Case (Val $ InjRV v) e1 e2) (App e2 (Val v)). Proof. solve_pure_exec. Qed. Section lifting. Context `{heapG Σ}. Implicit Types P Q : iProp Σ. Implicit Types Φ : val → iProp Σ. Implicit Types efs : list expr. Implicit Types σ : state. (** Fork: Not using Texan triples to avoid some unnecessary [True] *) Lemma wp_fork s E e Φ : ▷ WP e @ s; ⊤ {{ _, True }} -∗ ▷ Φ (LitV LitUnit) -∗ WP Fork e @ s; E {{ Φ }}. Proof. iIntros "He HΦ". iApply wp_lift_pure_det_head_step; [by eauto|intros; inv_head_step; by eauto|]. iModIntro; iNext; iIntros "!> /= {$He}". by iApply wp_value. Qed. Lemma twp_fork s E e Φ : WP e @ s; ⊤ [{ _, True }] -∗ Φ (LitV LitUnit) -∗ WP Fork e @ s; E [{ Φ }]. Proof. iIntros "He HΦ". iApply twp_lift_pure_det_head_step; [eauto|intros; inv_head_step; eauto|]. iIntros "!> /= {$He}". by iApply twp_value. Qed. (** Heap *) Lemma wp_alloc s E v : {{{ True }}} Alloc (Val v) @ s; E {{{ l, RET LitV (LitLoc l); l ↦ v }}}. Proof. iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs) "[Hσ Hκs] !>"; iSplit; first by auto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma twp_alloc s E v : [[{ True }]] Alloc (Val v) @ s; E [[{ l, RET LitV (LitLoc l); l ↦ v }]]. Proof. iIntros (Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs) "[Hσ Hκs] !>"; iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done. iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_load s E l q v : {{{ ▷ l ↦{q} v }}} Load (Val $ LitV $ LitLoc l) @ s; E {{{ RET v; l ↦{q} v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma twp_load s E l q v : [[{ l ↦{q} v }]] Load (Val $ LitV $ LitLoc l) @ s; E [[{ RET v; l ↦{q} v }]]. Proof. iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_store s E l v' v : {{{ ▷ l ↦ v' }}} Store (Val $ LitV (LitLoc l)) (Val v) @ s; E {{{ RET LitV LitUnit; l ↦ v }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_store s E l v' v : [[{ l ↦ v' }]] Store (Val $ LitV $ LitLoc l) (Val v) @ s; E [[{ RET LitV LitUnit; l ↦ v }]]. Proof. iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_cas_fail s E l q v' v1 v2 : v' ≠ v1 → vals_cas_compare_safe v' v1 → {{{ ▷ l ↦{q} v' }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E {{{ RET LitV (LitBool false); l ↦{q} v' }}}. Proof. iIntros (?? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iFrame. by iApply "HΦ". Qed. Lemma twp_cas_fail s E l q v' v1 v2 : v' ≠ v1 → vals_cas_compare_safe v' v1 → [[{ l ↦{q} v' }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E [[{ RET LitV (LitBool false); l ↦{q} v' }]]. Proof. iIntros (?? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_cas_suc s E l v1 v2 : vals_cas_compare_safe v1 v1 → {{{ ▷ l ↦ v1 }}} CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E {{{ RET LitV (LitBool true); l ↦ v2 }}}. Proof. iIntros (? Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_cas_suc s E l v1 v2 : vals_cas_compare_safe v1 v1 → [[{ l ↦ v1 }]] CAS (Val $ LitV $ LitLoc l) (Val v1) (Val v2) @ s; E [[{ RET LitV (LitBool true); l ↦ v2 }]]. Proof. iIntros (? Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. Lemma wp_faa s E l i1 i2 : {{{ ▷ l ↦ LitV (LitInt i1) }}} FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E {{{ RET LitV (LitInt i1); l ↦ LitV (LitInt (i1 + i2)) }}}. Proof. iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iFrame. by iApply "HΦ". Qed. Lemma twp_faa s E l i1 i2 : [[{ l ↦ LitV (LitInt i1) }]] FAA (Val $ LitV $ LitLoc l) (Val $ LitV $ LitInt i2) @ s; E [[{ RET LitV (LitInt i1); l ↦ LitV (LitInt (i1 + i2)) }]]. Proof. iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?. iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step. iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]". iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ". Qed. (** Lifting lemmas for creating and resolving prophecy variables *) Lemma wp_new_proph : {{{ True }}} NewProph {{{ v (p : proph_id), RET (LitV (LitProphecy p)); proph p v }}}. Proof. iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR". iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep). inv_head_step. iMod (@proph_map_alloc with "HR") as "[HR Hp]". { intro Hin. apply (iffLR (elem_of_subseteq _ _) Hdom) in Hin. done. } iModIntro; iSplit=> //. iFrame. iSplitL "HR". - iExists _. iSplit; last done. iPureIntro. split. + apply first_resolve_insert; auto. + rewrite dom_insert_L. by apply union_mono_l. - iApply "HΦ". done. Qed. Lemma wp_resolve_proph e1 e2 p v w: IntoVal e1 (LitV (LitProphecy p)) → IntoVal e2 w → {{{ proph p v }}} ResolveProph e1 e2 {{{ RET (LitV LitUnit); ⌜v = Some w⌝ }}}. Proof. iIntros (<- <- Φ) "Hp HΦ". iApply wp_lift_atomic_head_step_no_fork; auto. iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR". iDestruct (@proph_map_valid with "HR Hp") as %Hlookup. iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iApply fupd_frame_l. iSplit=> //. iFrame. iMod (@proph_map_remove with "HR Hp") as "Hp". iModIntro. iSplitR "HΦ". - iExists _. iFrame. iPureIntro. split; first by eapply first_resolve_delete. rewrite dom_delete. rewrite <- difference_empty_L. by eapply difference_mono. - iApply "HΦ". iPureIntro. by eapply first_resolve_eq. Qed. End lifting.