Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Rice Wine
Iris
Commits
be7ca8aa
Commit
be7ca8aa
authored
Feb 21, 2018
by
Joseph Tassarotti
Committed by
Robbert Krebbers
Feb 23, 2018
Browse files
More tests of iInv.
parent
def85437
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
21 additions
and
1 deletion
+21
-1
theories/tests/proofmode_iris.v
theories/tests/proofmode_iris.v
+21
-1
No files found.
theories/tests/proofmode_iris.v
View file @
be7ca8aa
...
...
@@ -60,7 +60,7 @@ Section iris_tests.
by
iApply
inv_alloc
.
Qed
.
Lemma
test_iInv_
1
N
P
:
inv
N
(
bi_persistently
P
)
={
⊤
}=
∗
▷
P
.
Lemma
test_iInv_
0
N
P
:
inv
N
(
bi_persistently
P
)
={
⊤
}=
∗
▷
P
.
Proof
.
iIntros
"#H"
.
iInv
N
as
"#H2"
"Hclose"
.
...
...
@@ -68,6 +68,16 @@ Section iris_tests.
iModIntro
.
by
iNext
.
Qed
.
Lemma
test_iInv_1
N
E
P
:
↑
N
⊆
E
→
inv
N
(
bi_persistently
P
)
={
E
}=
∗
▷
P
.
Proof
.
iIntros
(?)
"#H"
.
iInv
N
as
"#H2"
"Hclose"
.
iMod
(
"Hclose"
with
"H2"
).
iModIntro
.
by
iNext
.
Qed
.
Lemma
test_iInv_2
γ
p
N
P
:
cinv
N
γ
(
bi_persistently
P
)
∗
cinv_own
γ
p
={
⊤
}=
∗
cinv_own
γ
p
∗
▷
P
.
Proof
.
...
...
@@ -187,4 +197,14 @@ Section iris_tests.
Fail
iInv
"H2"
as
"#H2"
"Hclose"
.
done
.
Qed
.
(* test destruction of existentials when opening an invariant *)
Lemma
test_iInv_13
N
:
inv
N
(
∃
(
v1
v2
v3
:
nat
),
emp
∗
emp
∗
emp
)
={
⊤
}=
∗
▷
emp
.
Proof
.
iIntros
"H"
;
iInv
"H"
as
(
v1
v2
v3
)
"(?&?&_)"
"Hclose"
.
iMod
(
"Hclose"
with
"[]"
).
{
iNext
;
iExists
O
;
done
.
}
iModIntro
.
by
iNext
.
Qed
.
End
iris_tests
.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment