Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rice Wine
Iris
Commits
a2dab2fb
Commit
a2dab2fb
authored
Jun 18, 2018
by
Ralf Jung
Browse files
make coercions explicit to improve readability
parent
598b8449
Changes
1
Hide whitespace changes
Inline
Side-by-side
theories/proofmode/classes.v
View file @
a2dab2fb
...
...
@@ -505,16 +505,19 @@ Hint Mode IntoEmbed + + + ! - : typeclass_instances.
No Hint Modes are declared here. The appropriate one would be
[Hint Mode - ! -], but the fact that Coq ignores primitive
projections for hints modes would make this fail.*)
Class
AsEmpValid
{
PROP
:
bi
}
(
φ
:
Prop
)
(
P
:
PROP
)
:
=
as_emp_valid
:
φ
↔
P
.
Class
AsEmpValid
{
PROP
:
bi
}
(
φ
:
Prop
)
(
P
:
PROP
)
:
=
as_emp_valid
:
φ
↔
bi_emp_valid
P
.
Arguments
AsEmpValid
{
_
}
_
%
type
_
%
I
.
Class
AsEmpValid0
{
PROP
:
bi
}
(
φ
:
Prop
)
(
P
:
PROP
)
:
=
as_emp_valid_here
:
AsEmpValid
φ
P
.
Arguments
AsEmpValid0
{
_
}
_
%
type
_
%
I
.
Existing
Instance
as_emp_valid_here
|
0
.
Lemma
as_emp_valid_1
(
φ
:
Prop
)
{
PROP
:
bi
}
(
P
:
PROP
)
`
{!
AsEmpValid
φ
P
}
:
φ
→
P
.
Lemma
as_emp_valid_1
(
φ
:
Prop
)
{
PROP
:
bi
}
(
P
:
PROP
)
`
{!
AsEmpValid
φ
P
}
:
φ
→
bi_emp_valid
P
.
Proof
.
by
apply
as_emp_valid
.
Qed
.
Lemma
as_emp_valid_2
(
φ
:
Prop
)
{
PROP
:
bi
}
(
P
:
PROP
)
`
{!
AsEmpValid
φ
P
}
:
P
→
φ
.
Lemma
as_emp_valid_2
(
φ
:
Prop
)
{
PROP
:
bi
}
(
P
:
PROP
)
`
{!
AsEmpValid
φ
P
}
:
bi_emp_valid
P
→
φ
.
Proof
.
by
apply
as_emp_valid
.
Qed
.
(* Input: [P]; Outputs: [N],
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment