Commit 9ac050a9 authored by Ralf Jung's avatar Ralf Jung

more consistent naming

parent b7a767a7
......@@ -206,11 +206,11 @@ Lemma ofe_fun_validI {A} {B : A → ucmraT} (g : ofe_fun B) : ✓ g ⊣⊢ ∀ i
Proof. exact: uPred_primitive.ofe_fun_validI. Qed.
(** Consistency/soundness statement *)
Lemma soundness_pure φ : bi_emp_valid (PROP:=uPredI M) φ φ.
Proof. apply soundness_pure. Qed.
Lemma pure_soundness φ : bi_emp_valid (PROP:=uPredI M) φ φ.
Proof. apply pure_soundness. Qed.
Lemma soundness_later P : bi_emp_valid ( P) bi_emp_valid P.
Proof. apply soundness_later. Qed.
Lemma later_soundness P : bi_emp_valid ( P) bi_emp_valid P.
Proof. apply later_soundness. Qed.
End restate.
(** See [derived.v] for the version for basic updates. *)
......
......@@ -92,7 +92,7 @@ Global Instance uPred_ownM_sep_homomorphism :
Proof. split; [split; try apply _|]. apply ownM_op. apply ownM_unit'. Qed.
(** Consistency/soundness statement *)
Lemma soundness_bupd_plain P `{!Plain P} : bi_emp_valid (|==> P) bi_emp_valid P.
Lemma bupd_plain_soundness P `{!Plain P} : bi_emp_valid (|==> P) bi_emp_valid P.
Proof.
eapply bi_emp_valid_mono. etrans; last exact: bupd_plainly. apply bupd_mono'.
apply: plain.
......@@ -101,8 +101,8 @@ Qed.
Corollary soundness φ n : (^n φ : uPred M)%I φ.
Proof.
induction n as [|n IH]=> /=.
- apply soundness_pure.
- intros H. by apply IH, soundness_later.
- apply pure_soundness.
- intros H. by apply IH, later_soundness.
Qed.
Corollary consistency_modal n : ¬ (^n False : uPred M)%I.
......
......@@ -62,7 +62,7 @@ Qed.
Lemma fupd_plain_soundness `{!invPreG Σ} E1 E2 (P: iProp Σ) `{!Plain P}:
( `{Hinv: !invG Σ}, bi_emp_valid (|={E1,E2}=> P)) bi_emp_valid P.
Proof.
iIntros (Hfupd). apply soundness_later. iMod wsat_alloc as (Hinv) "[Hw HE]".
iIntros (Hfupd). apply later_soundness. iMod wsat_alloc as (Hinv) "[Hw HE]".
iAssert (|={,E2}=> P)%I as "H".
{ iMod fupd_intro_mask'; last iApply Hfupd. done. }
rewrite uPred_fupd_eq /uPred_fupd_def.
......
......@@ -801,10 +801,10 @@ Lemma ofe_fun_validI {A} {B : A → ucmraT} (g : ofe_fun B) : ✓ g ⊣⊢ ∀ i
Proof. by unseal. Qed.
(** Consistency/soundness statement *)
Lemma soundness_pure φ : (True φ ) φ.
Lemma pure_soundness φ : (True φ ) φ.
Proof. unseal=> -[H]. by apply (H 0 ε); eauto using ucmra_unit_validN. Qed.
Lemma soundness_later P : (True P) (True P).
Lemma later_soundness P : (True P) (True P).
Proof.
unseal=> -[HP]; split=> n x Hx _.
apply uPred_mono with n ε; eauto using ucmra_unit_leastN.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment