Commit 98e51974 by Ralf Jung

### STS: accessor for sts_inv

parent 1befd3fe
 ... ... @@ -32,6 +32,7 @@ Notation steps := (rtc step). Inductive frame_step (T : tokens sts) (s1 s2 : state sts) : Prop := | Frame_step T1 T2 : T1 ⊥ tok s1 ∪ T → step (s1,T1) (s2,T2) → frame_step T s1 s2. Notation frame_steps T := (rtc (frame_step T)). (** ** Closure under frame steps *) Record closed (S : states sts) (T : tokens sts) : Prop := Closed { ... ... @@ -39,7 +40,7 @@ Record closed (S : states sts) (T : tokens sts) : Prop := Closed { closed_step s1 s2 : s1 ∈ S → frame_step T s1 s2 → s2 ∈ S }. Definition up (s : state sts) (T : tokens sts) : states sts := {[ s' | rtc (frame_step T) s s' ]}. {[ s' | frame_steps T s s' ]}. Definition up_set (S : states sts) (T : tokens sts) : states sts := S ≫= λ s, up s T. ... ... @@ -86,7 +87,7 @@ Qed. (** ** Properties of closure under frame steps *) Lemma closed_steps S T s1 s2 : closed S T → s1 ∈ S → rtc (frame_step T) s1 s2 → s2 ∈ S. closed S T → s1 ∈ S → frame_steps T s1 s2 → s2 ∈ S. Proof. induction 3; eauto using closed_step. Qed. Lemma closed_op T1 T2 S1 S2 : closed S1 T1 → closed S2 T2 → closed (S1 ∩ S2) (T1 ∪ T2). ... ... @@ -160,6 +161,7 @@ Proof. move=> ?? s [s' [? ?]]. eauto using closed_steps. Qed. End sts. Notation steps := (rtc step). Notation frame_steps T := (rtc (frame_step T)). (* The type of bounds we can give to the state of an STS. This is the type that we equip with an RA structure. *) ... ...
 ... ... @@ -46,7 +46,7 @@ Section definitions. Proof. apply _. Qed. End definitions. Typeclasses Opaque sts_own sts_ownS sts_ctx. Typeclasses Opaque sts_own sts_ownS sts_inv sts_ctx. Instance: Params (@sts_inv) 5. Instance: Params (@sts_ownS) 5. Instance: Params (@sts_own) 6. ... ... @@ -85,17 +85,16 @@ Section sts. { apply sts_auth_valid; set_solver. } iExists γ; iRevert "Hγ"; rewrite -sts_op_auth_frag_up; iIntros "[Hγ \$]". iVs (inv_alloc N _ (sts_inv γ φ) with "[Hφ Hγ]") as "#?"; auto. iNext. iExists s. by iFrame. rewrite /sts_inv. iNext. iExists s. by iFrame. Qed. Lemma sts_openS E N γ S T : nclose N ⊆ E → sts_ctx γ N φ ★ sts_ownS γ S T ={E,E∖N}=> ∃ s, Lemma sts_accS E γ S T : ▷ sts_inv γ φ ★ sts_ownS γ S T ={E}=> ∃ s, ■ (s ∈ S) ★ ▷ φ s ★ ∀ s' T', ■ sts.steps (s, T) (s', T') ★ ▷ φ s' ={E∖N,E}=★ sts_own γ s' T'. ■ sts.steps (s, T) (s', T') ★ ▷ φ s' ={E}=★ ▷ sts_inv γ φ ★ sts_own γ s' T'. Proof. iIntros (?) "[#? Hγf]". rewrite /sts_ctx /sts_ownS /sts_inv /sts_own. iInv N as (s) "[>Hγ Hφ]" "Hclose". iIntros "[Hinv Hγf]". rewrite /sts_ownS /sts_inv /sts_own. iDestruct "Hinv" as (s) "[>Hγ Hφ]". iCombine "Hγ" "Hγf" as "Hγ"; iDestruct (own_valid with "#Hγ") as %Hvalid. assert (s ∈ S) by eauto using sts_auth_frag_valid_inv. assert (✓ sts_frag S T) as [??] by eauto using cmra_valid_op_r. ... ... @@ -104,13 +103,38 @@ Section sts. iIntros (s' T') "[% Hφ]". iVs (own_update with "Hγ") as "Hγ"; first eauto using sts_update_auth. iRevert "Hγ"; rewrite -sts_op_auth_frag_up; iIntros "[Hγ \$]". iApply "Hclose". iNext; iExists s'; by iFrame. iVsIntro. iNext. iExists s'; by iFrame. Qed. Lemma sts_acc E γ s0 T : ▷ sts_inv γ φ ★ sts_own γ s0 T ={E}=> ∃ s, ■ sts.frame_steps T s0 s ★ ▷ φ s ★ ∀ s' T', ■ sts.steps (s, T) (s', T') ★ ▷ φ s' ={E}=★ ▷ sts_inv γ φ ★ sts_own γ s' T'. Proof. by apply sts_accS. Qed. Lemma sts_openS E N γ S T : nclose N ⊆ E → sts_ctx γ N φ ★ sts_ownS γ S T ={E,E∖N}=> ∃ s, ■ (s ∈ S) ★ ▷ φ s ★ ∀ s' T', ■ sts.steps (s, T) (s', T') ★ ▷ φ s' ={E∖N,E}=★ sts_own γ s' T'. Proof. iIntros (?) "[#? Hγf]". rewrite /sts_ctx. iInv N as "Hinv" "Hclose". (* The following is essentially a very trivial composition of the accessors [sts_acc] and [inv_open] -- but since we don't have any good support for that currently, this gets more tedious than it should, with us having to unpack and repack various proofs. TODO: Make this mostly automatic, by supporting "opening accessors around accessors". *) iVs (sts_accS with "[Hinv Hγf]") as (s) "(?&?& HclSts)"; first by iFrame. iVsIntro. iExists s. iFrame. iIntros (s' T') "H". iVs ("HclSts" \$! s' T' with "H") as "(Hinv & ?)". iFrame. iVs ("Hclose" with "Hinv"). done. Qed. Lemma sts_open E N γ s0 T : nclose N ⊆ E → sts_ctx γ N φ ★ sts_own γ s0 T ={E,E∖N}=> ∃ s, ■ (s ∈ sts.up s0 T) ★ ▷ φ s ★ ∀ s' T', ■ (sts.frame_steps T s0 s) ★ ▷ φ s ★ ∀ s' T', ■ (sts.steps (s, T) (s', T')) ★ ▷ φ s' ={E∖N,E}=★ sts_own γ s' T'. Proof. by apply sts_openS. Qed. End sts.
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment