Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rice Wine
Iris
Commits
974189b4
Commit
974189b4
authored
Jan 16, 2016
by
Robbert Krebbers
Browse files
More stuff about the model, and use separate files.
parent
668efc7d
Changes
3
Hide whitespace changes
Inline
Side-by-side
iris/model.v
View file @
974189b4
Require
Export
modures
.
logic
modures
.
cmra
.
Require
Export
modures
.
fin_maps
modures
.
agree
modures
.
excl
.
Require
Export
modures
.
logic
iris
.
resources
.
Require
Import
modures
.
cofe_solver
.
(* Parameter *)
Record
iParam
:
=
IParam
{
istate
:
Type
;
icmra
:
cofeT
→
cmraT
;
icmra_empty
A
:
Empty
(
icmra
A
)
;
icmra_empty_spec
A
:
RAIdentity
(
icmra
A
)
;
icmra_map
{
A
B
}
(
f
:
A
-
n
>
B
)
:
icmra
A
-
n
>
icmra
B
;
icmra_map_ne
{
A
B
}
n
:
Proper
(
dist
n
==>
dist
n
)
(@
icmra_map
A
B
)
;
icmra_map_id
{
A
:
cofeT
}
(
x
:
icmra
A
)
:
icmra_map
cid
x
≡
x
;
icmra_map_compose
{
A
B
C
}
(
f
:
A
-
n
>
B
)
(
g
:
B
-
n
>
C
)
x
:
icmra_map
(
g
◎
f
)
x
≡
icmra_map
g
(
icmra_map
f
x
)
;
icmra_map_mono
{
A
B
}
(
f
:
A
-
n
>
B
)
:
CMRAMonotone
(
icmra_map
f
)
}.
Existing
Instances
icmra_empty
icmra_empty_spec
icmra_map_ne
icmra_map_mono
.
Lemma
icmra_map_ext
(
Σ
:
iParam
)
{
A
B
}
(
f
g
:
A
-
n
>
B
)
m
:
(
∀
x
,
f
x
≡
g
x
)
→
icmra_map
Σ
f
m
≡
icmra_map
Σ
g
m
.
Proof
.
by
intros
?
;
apply
equiv_dist
=>
n
;
apply
icmra_map_ne
=>
?
;
apply
equiv_dist
.
Qed
.
(* Resources *)
Record
res
(
Σ
:
iParam
)
(
A
:
cofeT
)
:
=
Res
{
wld
:
mapRA
positive
(
agreeRA
(
laterC
A
))
;
pst
:
exclRA
(
leibnizC
(
istate
Σ
))
;
gst
:
icmra
Σ
(
laterC
A
)
;
}.
Add
Printing
Constructor
res
.
Arguments
Res
{
_
_
}
_
_
_
.
Arguments
wld
{
_
_
}
_
.
Arguments
pst
{
_
_
}
_
.
Arguments
gst
{
_
_
}
_
.
Instance
:
Params
(@
Res
)
2
.
Instance
:
Params
(@
wld
)
2
.
Instance
:
Params
(@
pst
)
2
.
Instance
:
Params
(@
gst
)
2
.
Section
res
.
Context
(
Σ
:
iParam
)
(
A
:
cofeT
).
Implicit
Types
r
:
res
Σ
A
.
Inductive
res_equiv'
(
r1
r2
:
res
Σ
A
)
:
=
Res_equiv
:
wld
r1
≡
wld
r2
→
pst
r1
≡
pst
r2
→
gst
r1
≡
gst
r2
→
res_equiv'
r1
r2
.
Instance
res_equiv
:
Equiv
(
res
Σ
A
)
:
=
res_equiv'
.
Inductive
res_dist'
(
n
:
nat
)
(
r1
r2
:
res
Σ
A
)
:
=
Res_dist
:
wld
r1
={
n
}=
wld
r2
→
pst
r1
={
n
}=
pst
r2
→
gst
r1
={
n
}=
gst
r2
→
res_dist'
n
r1
r2
.
Instance
res_dist
:
Dist
(
res
Σ
A
)
:
=
res_dist'
.
Global
Instance
Res_ne
n
:
Proper
(
dist
n
==>
dist
n
==>
dist
n
==>
dist
n
)
(@
Res
Σ
A
).
Proof
.
done
.
Qed
.
Global
Instance
Res_proper
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
)
==>
(
≡
))
(@
Res
Σ
A
).
Proof
.
done
.
Qed
.
Global
Instance
wld_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
wld
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
wld_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
wld
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
pst_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
pst
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
pst_ne'
n
:
Proper
(
dist
(
S
n
)
==>
(
≡
))
(@
pst
Σ
A
).
Proof
.
intros
σ
σ
'
[???]
;
apply
(
timeless
_
),
dist_le
with
(
S
n
)
;
auto
with
lia
.
Qed
.
Global
Instance
pst_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
pst
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
gst_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
gst
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
gst_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
gst
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Instance
res_compl
:
Compl
(
res
Σ
A
)
:
=
λ
c
,
Res
(
compl
(
chain_map
wld
c
))
(
compl
(
chain_map
pst
c
))
(
compl
(
chain_map
gst
c
)).
Definition
res_cofe_mixin
:
CofeMixin
(
res
Σ
A
).
Proof
.
split
.
*
intros
w1
w2
;
split
.
+
by
destruct
1
;
constructor
;
apply
equiv_dist
.
+
by
intros
Hw
;
constructor
;
apply
equiv_dist
=>
n
;
destruct
(
Hw
n
).
*
intros
n
;
split
.
+
done
.
+
by
destruct
1
;
constructor
.
+
do
2
destruct
1
;
constructor
;
etransitivity
;
eauto
.
*
by
destruct
1
;
constructor
;
apply
dist_S
.
*
done
.
*
intros
c
n
;
constructor
.
+
apply
(
conv_compl
(
chain_map
wld
c
)
n
).
+
apply
(
conv_compl
(
chain_map
pst
c
)
n
).
+
apply
(
conv_compl
(
chain_map
gst
c
)
n
).
Qed
.
Canonical
Structure
resC
:
cofeT
:
=
CofeT
res_cofe_mixin
.
Global
Instance
res_timeless
r
:
Timeless
(
wld
r
)
→
Timeless
(
gst
r
)
→
Timeless
r
.
Proof
.
by
destruct
3
;
constructor
;
try
apply
(
timeless
_
).
Qed
.
Instance
res_op
:
Op
(
res
Σ
A
)
:
=
λ
r1
r2
,
Res
(
wld
r1
⋅
wld
r2
)
(
pst
r1
⋅
pst
r2
)
(
gst
r1
⋅
gst
r2
).
Global
Instance
res_empty
:
Empty
(
res
Σ
A
)
:
=
Res
∅
∅
∅
.
Instance
res_unit
:
Unit
(
res
Σ
A
)
:
=
λ
r
,
Res
(
unit
(
wld
r
))
(
unit
(
pst
r
))
(
unit
(
gst
r
)).
Instance
res_valid
:
Valid
(
res
Σ
A
)
:
=
λ
r
,
✓
(
wld
r
)
∧
✓
(
pst
r
)
∧
✓
(
gst
r
).
Instance
res_validN
:
ValidN
(
res
Σ
A
)
:
=
λ
n
r
,
✓
{
n
}
(
wld
r
)
∧
✓
{
n
}
(
pst
r
)
∧
✓
{
n
}
(
gst
r
).
Instance
res_minus
:
Minus
(
res
Σ
A
)
:
=
λ
r1
r2
,
Res
(
wld
r1
⩪
wld
r2
)
(
pst
r1
⩪
pst
r2
)
(
gst
r1
⩪
gst
r2
).
Lemma
res_included
(
r1
r2
:
res
Σ
A
)
:
r1
≼
r2
↔
wld
r1
≼
wld
r2
∧
pst
r1
≼
pst
r2
∧
gst
r1
≼
gst
r2
.
Proof
.
split
;
[|
by
intros
([
w
?]&[
σ
?]&[
m
?])
;
exists
(
Res
w
σ
m
)].
intros
[
r
Hr
]
;
split_ands
;
[
exists
(
wld
r
)|
exists
(
pst
r
)|
exists
(
gst
r
)]
;
apply
Hr
.
Qed
.
Lemma
res_includedN
(
r1
r2
:
res
Σ
A
)
n
:
r1
≼
{
n
}
r2
↔
wld
r1
≼
{
n
}
wld
r2
∧
pst
r1
≼
{
n
}
pst
r2
∧
gst
r1
≼
{
n
}
gst
r2
.
Proof
.
split
;
[|
by
intros
([
w
?]&[
σ
?]&[
m
?])
;
exists
(
Res
w
σ
m
)].
intros
[
r
Hr
]
;
split_ands
;
[
exists
(
wld
r
)|
exists
(
pst
r
)|
exists
(
gst
r
)]
;
apply
Hr
.
Qed
.
Definition
res_cmra_mixin
:
CMRAMixin
(
res
Σ
A
).
Proof
.
split
.
*
by
intros
n
x
[???]
?
[???]
;
constructor
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
[???]
;
constructor
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
[???]
(?&?&?)
;
split_ands'
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
[???]
[???]
?
[???]
;
constructor
;
simpl
in
*
;
cofe_subst
.
*
done
.
*
by
intros
n
?
(?&?&?)
;
split_ands'
;
apply
cmra_valid_S
.
*
intros
r
;
unfold
valid
,
res_valid
,
validN
,
res_validN
.
rewrite
!
cmra_valid_validN
;
naive_solver
.
*
intros
???
;
constructor
;
simpl
;
apply
(
associative
_
).
*
intros
??
;
constructor
;
simpl
;
apply
(
commutative
_
).
*
intros
?
;
constructor
;
simpl
;
apply
ra_unit_l
.
*
intros
?
;
constructor
;
simpl
;
apply
ra_unit_idempotent
.
*
intros
n
r1
r2
;
rewrite
!
res_includedN
.
by
intros
(?&?&?)
;
split_ands'
;
apply
cmra_unit_preserving
.
*
intros
n
r1
r2
(?&?&?)
;
split_ands'
;
simpl
in
*
;
eapply
cmra_valid_op_l
;
eauto
.
*
intros
n
r1
r2
;
rewrite
res_includedN
;
intros
(?&?&?).
by
constructor
;
apply
cmra_op_minus
.
Qed
.
Global
Instance
res_ra_empty
:
RAIdentity
(
res
Σ
A
).
Proof
.
by
repeat
split
;
simpl
;
repeat
apply
ra_empty_valid
;
rewrite
(
left_id
_
_
).
Qed
.
Definition
res_cmra_extend_mixin
:
CMRAExtendMixin
(
res
Σ
A
).
Proof
.
intros
n
r
r1
r2
(?&?&?)
[???]
;
simpl
in
*.
destruct
(
cmra_extend_op
n
(
wld
r
)
(
wld
r1
)
(
wld
r2
))
as
([
w
w'
]&?&?&?),
(
cmra_extend_op
n
(
pst
r
)
(
pst
r1
)
(
pst
r2
))
as
([
σ
σ
'
]&?&?&?),
(
cmra_extend_op
n
(
gst
r
)
(
gst
r1
)
(
gst
r2
))
as
([
m
m'
]&?&?&?)
;
auto
.
by
exists
(
Res
w
σ
m
,
Res
w'
σ
'
m'
).
Qed
.
Canonical
Structure
resRA
:
cmraT
:
=
CMRAT
res_cofe_mixin
res_cmra_mixin
res_cmra_extend_mixin
.
Lemma
Res_op
w1
w2
σ
1
σ
2
m1
m2
:
Res
w1
σ
1
m1
⋅
Res
w2
σ
2
m2
=
Res
(
w1
⋅
w2
)
(
σ
1
⋅
σ
2
)
(
m1
⋅
m2
).
Proof
.
done
.
Qed
.
Lemma
Res_unit
w
σ
m
:
unit
(
Res
w
σ
m
)
=
Res
(
unit
w
)
(
unit
σ
)
(
unit
m
).
Proof
.
done
.
Qed
.
End
res
.
Definition
res_map
{
Σ
A
B
}
(
f
:
A
-
n
>
B
)
(
r
:
res
Σ
A
)
:
res
Σ
B
:
=
Res
(
agree_map
(
later_map
f
)
<$>
(
wld
r
))
(
pst
r
)
(
icmra_map
Σ
(
laterC_map
f
)
(
gst
r
)).
Instance
res_map_ne
Σ
(
A
B
:
cofeT
)
(
f
:
A
-
n
>
B
)
:
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
f
)
→
∀
n
,
Proper
(
dist
n
==>
dist
n
)
(@
res_map
Σ
_
_
f
).
Proof
.
by
intros
Hf
n
[]
?
[???]
;
constructor
;
simpl
in
*
;
cofe_subst
.
Qed
.
Lemma
res_map_id
{
Σ
A
}
(
r
:
res
Σ
A
)
:
res_map
cid
r
≡
r
.
Proof
.
constructor
;
simpl
;
[|
done
|].
*
rewrite
-{
2
}(
map_fmap_id
(
wld
r
))
;
apply
map_fmap_setoid_ext
=>
i
y
?
/=.
rewrite
-{
2
}(
agree_map_id
y
)
;
apply
agree_map_ext
=>
y'
/=.
by
rewrite
later_map_id
.
*
rewrite
-{
2
}(
icmra_map_id
Σ
(
gst
r
))
;
apply
icmra_map_ext
=>
m
/=.
by
rewrite
later_map_id
.
Qed
.
Lemma
res_map_compose
{
Σ
A
B
C
}
(
f
:
A
-
n
>
B
)
(
g
:
B
-
n
>
C
)
(
r
:
res
Σ
A
)
:
res_map
(
g
◎
f
)
r
≡
res_map
g
(
res_map
f
r
).
Proof
.
constructor
;
simpl
;
[|
done
|].
*
rewrite
-
map_fmap_compose
;
apply
map_fmap_setoid_ext
=>
i
y
_
/=.
rewrite
-
agree_map_compose
;
apply
agree_map_ext
=>
y'
/=.
by
rewrite
later_map_compose
.
*
rewrite
-
icmra_map_compose
;
apply
icmra_map_ext
=>
m
/=.
by
rewrite
later_map_compose
.
Qed
.
Definition
resRA_map
{
Σ
A
B
}
(
f
:
A
-
n
>
B
)
:
resRA
Σ
A
-
n
>
resRA
Σ
B
:
=
CofeMor
(
res_map
f
:
resRA
Σ
A
→
resRA
Σ
B
).
Instance
res_map_cmra_monotone
{
Σ
}
{
A
B
:
cofeT
}
(
f
:
A
-
n
>
B
)
:
CMRAMonotone
(@
res_map
Σ
_
_
f
).
Proof
.
split
.
*
by
intros
n
r1
r2
;
rewrite
!
res_includedN
;
intros
(?&?&?)
;
split_ands'
;
simpl
;
try
apply
includedN_preserving
.
*
by
intros
n
r
(?&?&?)
;
split_ands'
;
simpl
;
try
apply
validN_preserving
.
Qed
.
Instance
resRA_map_contractive
{
Σ
A
B
}
:
Contractive
(@
resRA_map
Σ
A
B
).
Proof
.
intros
n
f
g
?
r
;
constructor
;
simpl
;
[|
done
|].
*
by
apply
(
mapRA_map_ne
_
(
agreeRA_map
(
laterC_map
f
))
(
agreeRA_map
(
laterC_map
g
))),
agreeRA_map_ne
,
laterC_map_contractive
.
*
by
apply
icmra_map_ne
,
laterC_map_contractive
.
Qed
.
(* Functor for the solution *)
Module
iProp
.
Definition
F
(
Σ
:
iParam
)
(
A
B
:
cofeT
)
:
cofeT
:
=
uPredC
(
resRA
Σ
A
).
Definition
map
{
Σ
:
iParam
}
{
A1
A2
B1
B2
:
cofeT
}
...
...
@@ -239,3 +29,8 @@ Proof. apply solution_unfold_fold. Qed.
Lemma
iProp_unfold_fold
{
Σ
}
(
P
:
iPreProp
Σ
)
:
iProp_unfold
(
iProp_fold
P
)
≡
P
.
Proof
.
apply
solution_fold_unfold
.
Qed
.
Bind
Scope
uPred_scope
with
iProp
.
Instance
iProp_fold_inj
n
Σ
:
Injective
(
dist
n
)
(
dist
n
)
(@
iProp_fold
Σ
).
Proof
.
by
intros
X
Y
H
;
rewrite
-(
iProp_unfold_fold
X
)
H
iProp_unfold_fold
.
Qed
.
Instance
iProp_unfold_inj
n
Σ
:
Injective
(
dist
n
)
(
dist
n
)
(@
iProp_unfold
Σ
).
Proof
.
by
intros
X
Y
H
;
rewrite
-(
iProp_fold_unfold
X
)
H
iProp_fold_unfold
.
Qed
.
iris/parameter.v
0 → 100644
View file @
974189b4
Require
Export
modures
.
cmra
.
Record
iParam
:
=
IParam
{
istate
:
Type
;
icmra
:
cofeT
→
cmraT
;
icmra_empty
A
:
Empty
(
icmra
A
)
;
icmra_empty_spec
A
:
RAIdentity
(
icmra
A
)
;
icmra_map
{
A
B
}
(
f
:
A
-
n
>
B
)
:
icmra
A
-
n
>
icmra
B
;
icmra_map_ne
{
A
B
}
n
:
Proper
(
dist
n
==>
dist
n
)
(@
icmra_map
A
B
)
;
icmra_map_id
{
A
:
cofeT
}
(
x
:
icmra
A
)
:
icmra_map
cid
x
≡
x
;
icmra_map_compose
{
A
B
C
}
(
f
:
A
-
n
>
B
)
(
g
:
B
-
n
>
C
)
x
:
icmra_map
(
g
◎
f
)
x
≡
icmra_map
g
(
icmra_map
f
x
)
;
icmra_map_mono
{
A
B
}
(
f
:
A
-
n
>
B
)
:
CMRAMonotone
(
icmra_map
f
)
}.
Existing
Instances
icmra_empty
icmra_empty_spec
icmra_map_ne
icmra_map_mono
.
Lemma
icmra_map_ext
(
Σ
:
iParam
)
{
A
B
}
(
f
g
:
A
-
n
>
B
)
m
:
(
∀
x
,
f
x
≡
g
x
)
→
icmra_map
Σ
f
m
≡
icmra_map
Σ
g
m
.
Proof
.
by
intros
?
;
apply
equiv_dist
=>
n
;
apply
icmra_map_ne
=>
?
;
apply
equiv_dist
.
Qed
.
\ No newline at end of file
iris/resources.v
0 → 100644
View file @
974189b4
Require
Export
modures
.
fin_maps
modures
.
agree
modures
.
excl
iris
.
parameter
.
Record
res
(
Σ
:
iParam
)
(
A
:
cofeT
)
:
=
Res
{
wld
:
mapRA
positive
(
agreeRA
(
laterC
A
))
;
pst
:
exclRA
(
leibnizC
(
istate
Σ
))
;
gst
:
icmra
Σ
(
laterC
A
)
;
}.
Add
Printing
Constructor
res
.
Arguments
Res
{
_
_
}
_
_
_
.
Arguments
wld
{
_
_
}
_
.
Arguments
pst
{
_
_
}
_
.
Arguments
gst
{
_
_
}
_
.
Instance
:
Params
(@
Res
)
2
.
Instance
:
Params
(@
wld
)
2
.
Instance
:
Params
(@
pst
)
2
.
Instance
:
Params
(@
gst
)
2
.
Section
res
.
Context
{
Σ
:
iParam
}
{
A
:
cofeT
}.
Implicit
Types
r
:
res
Σ
A
.
Inductive
res_equiv'
(
r1
r2
:
res
Σ
A
)
:
=
Res_equiv
:
wld
r1
≡
wld
r2
→
pst
r1
≡
pst
r2
→
gst
r1
≡
gst
r2
→
res_equiv'
r1
r2
.
Instance
res_equiv
:
Equiv
(
res
Σ
A
)
:
=
res_equiv'
.
Inductive
res_dist'
(
n
:
nat
)
(
r1
r2
:
res
Σ
A
)
:
=
Res_dist
:
wld
r1
={
n
}=
wld
r2
→
pst
r1
={
n
}=
pst
r2
→
gst
r1
={
n
}=
gst
r2
→
res_dist'
n
r1
r2
.
Instance
res_dist
:
Dist
(
res
Σ
A
)
:
=
res_dist'
.
Global
Instance
Res_ne
n
:
Proper
(
dist
n
==>
dist
n
==>
dist
n
==>
dist
n
)
(@
Res
Σ
A
).
Proof
.
done
.
Qed
.
Global
Instance
Res_proper
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
)
==>
(
≡
))
(@
Res
Σ
A
).
Proof
.
done
.
Qed
.
Global
Instance
wld_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
wld
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
wld_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
wld
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
pst_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
pst
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
pst_ne'
n
:
Proper
(
dist
(
S
n
)
==>
(
≡
))
(@
pst
Σ
A
).
Proof
.
intros
σ
σ
'
[???]
;
apply
(
timeless
_
),
dist_le
with
(
S
n
)
;
auto
with
lia
.
Qed
.
Global
Instance
pst_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
pst
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
gst_ne
n
:
Proper
(
dist
n
==>
dist
n
)
(@
gst
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Global
Instance
gst_proper
:
Proper
((
≡
)
==>
(
≡
))
(@
gst
Σ
A
).
Proof
.
by
destruct
1
.
Qed
.
Instance
res_compl
:
Compl
(
res
Σ
A
)
:
=
λ
c
,
Res
(
compl
(
chain_map
wld
c
))
(
compl
(
chain_map
pst
c
))
(
compl
(
chain_map
gst
c
)).
Definition
res_cofe_mixin
:
CofeMixin
(
res
Σ
A
).
Proof
.
split
.
*
intros
w1
w2
;
split
.
+
by
destruct
1
;
constructor
;
apply
equiv_dist
.
+
by
intros
Hw
;
constructor
;
apply
equiv_dist
=>
n
;
destruct
(
Hw
n
).
*
intros
n
;
split
.
+
done
.
+
by
destruct
1
;
constructor
.
+
do
2
destruct
1
;
constructor
;
etransitivity
;
eauto
.
*
by
destruct
1
;
constructor
;
apply
dist_S
.
*
done
.
*
intros
c
n
;
constructor
.
+
apply
(
conv_compl
(
chain_map
wld
c
)
n
).
+
apply
(
conv_compl
(
chain_map
pst
c
)
n
).
+
apply
(
conv_compl
(
chain_map
gst
c
)
n
).
Qed
.
Canonical
Structure
resC
:
cofeT
:
=
CofeT
res_cofe_mixin
.
Global
Instance
res_timeless
r
:
Timeless
(
wld
r
)
→
Timeless
(
gst
r
)
→
Timeless
r
.
Proof
.
by
destruct
3
;
constructor
;
try
apply
(
timeless
_
).
Qed
.
Instance
res_op
:
Op
(
res
Σ
A
)
:
=
λ
r1
r2
,
Res
(
wld
r1
⋅
wld
r2
)
(
pst
r1
⋅
pst
r2
)
(
gst
r1
⋅
gst
r2
).
Global
Instance
res_empty
:
Empty
(
res
Σ
A
)
:
=
Res
∅
∅
∅
.
Instance
res_unit
:
Unit
(
res
Σ
A
)
:
=
λ
r
,
Res
(
unit
(
wld
r
))
(
unit
(
pst
r
))
(
unit
(
gst
r
)).
Instance
res_valid
:
Valid
(
res
Σ
A
)
:
=
λ
r
,
✓
(
wld
r
)
∧
✓
(
pst
r
)
∧
✓
(
gst
r
).
Instance
res_validN
:
ValidN
(
res
Σ
A
)
:
=
λ
n
r
,
✓
{
n
}
(
wld
r
)
∧
✓
{
n
}
(
pst
r
)
∧
✓
{
n
}
(
gst
r
).
Instance
res_minus
:
Minus
(
res
Σ
A
)
:
=
λ
r1
r2
,
Res
(
wld
r1
⩪
wld
r2
)
(
pst
r1
⩪
pst
r2
)
(
gst
r1
⩪
gst
r2
).
Lemma
res_included
(
r1
r2
:
res
Σ
A
)
:
r1
≼
r2
↔
wld
r1
≼
wld
r2
∧
pst
r1
≼
pst
r2
∧
gst
r1
≼
gst
r2
.
Proof
.
split
;
[|
by
intros
([
w
?]&[
σ
?]&[
m
?])
;
exists
(
Res
w
σ
m
)].
intros
[
r
Hr
]
;
split_ands
;
[
exists
(
wld
r
)|
exists
(
pst
r
)|
exists
(
gst
r
)]
;
apply
Hr
.
Qed
.
Lemma
res_includedN
(
r1
r2
:
res
Σ
A
)
n
:
r1
≼
{
n
}
r2
↔
wld
r1
≼
{
n
}
wld
r2
∧
pst
r1
≼
{
n
}
pst
r2
∧
gst
r1
≼
{
n
}
gst
r2
.
Proof
.
split
;
[|
by
intros
([
w
?]&[
σ
?]&[
m
?])
;
exists
(
Res
w
σ
m
)].
intros
[
r
Hr
]
;
split_ands
;
[
exists
(
wld
r
)|
exists
(
pst
r
)|
exists
(
gst
r
)]
;
apply
Hr
.
Qed
.
Definition
res_cmra_mixin
:
CMRAMixin
(
res
Σ
A
).
Proof
.
split
.
*
by
intros
n
x
[???]
?
[???]
;
constructor
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
[???]
;
constructor
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
[???]
(?&?&?)
;
split_ands'
;
simpl
in
*
;
cofe_subst
.
*
by
intros
n
[???]
?
[???]
[???]
?
[???]
;
constructor
;
simpl
in
*
;
cofe_subst
.
*
done
.
*
by
intros
n
?
(?&?&?)
;
split_ands'
;
apply
cmra_valid_S
.
*
intros
r
;
unfold
valid
,
res_valid
,
validN
,
res_validN
.
rewrite
!
cmra_valid_validN
;
naive_solver
.
*
intros
???
;
constructor
;
simpl
;
apply
(
associative
_
).
*
intros
??
;
constructor
;
simpl
;
apply
(
commutative
_
).
*
intros
?
;
constructor
;
simpl
;
apply
ra_unit_l
.
*
intros
?
;
constructor
;
simpl
;
apply
ra_unit_idempotent
.
*
intros
n
r1
r2
;
rewrite
!
res_includedN
.
by
intros
(?&?&?)
;
split_ands'
;
apply
cmra_unit_preserving
.
*
intros
n
r1
r2
(?&?&?)
;
split_ands'
;
simpl
in
*
;
eapply
cmra_valid_op_l
;
eauto
.
*
intros
n
r1
r2
;
rewrite
res_includedN
;
intros
(?&?&?).
by
constructor
;
apply
cmra_op_minus
.
Qed
.
Global
Instance
res_ra_empty
:
RAIdentity
(
res
Σ
A
).
Proof
.
by
repeat
split
;
simpl
;
repeat
apply
ra_empty_valid
;
rewrite
(
left_id
_
_
).
Qed
.
Definition
res_cmra_extend_mixin
:
CMRAExtendMixin
(
res
Σ
A
).
Proof
.
intros
n
r
r1
r2
(?&?&?)
[???]
;
simpl
in
*.
destruct
(
cmra_extend_op
n
(
wld
r
)
(
wld
r1
)
(
wld
r2
))
as
([
w
w'
]&?&?&?),
(
cmra_extend_op
n
(
pst
r
)
(
pst
r1
)
(
pst
r2
))
as
([
σ
σ
'
]&?&?&?),
(
cmra_extend_op
n
(
gst
r
)
(
gst
r1
)
(
gst
r2
))
as
([
m
m'
]&?&?&?)
;
auto
.
by
exists
(
Res
w
σ
m
,
Res
w'
σ
'
m'
).
Qed
.
Canonical
Structure
resRA
:
cmraT
:
=
CMRAT
res_cofe_mixin
res_cmra_mixin
res_cmra_extend_mixin
.
Definition
update_pst
(
σ
:
istate
Σ
)
(
r
:
res
Σ
A
)
:
res
Σ
A
:
=
Res
(
wld
r
)
(
Excl
σ
)
(
gst
r
).
Definition
update_gst
(
m
:
icmra
Σ
(
laterC
A
))
(
r
:
res
Σ
A
)
:
res
Σ
A
:
=
Res
(
wld
r
)
(
pst
r
)
m
.
Lemma
wld_validN
n
r
:
✓
{
n
}
r
→
✓
{
n
}
(
wld
r
).
Proof
.
by
intros
(?&?&?).
Qed
.
Lemma
gst_validN
n
r
:
✓
{
n
}
r
→
✓
{
n
}
(
gst
r
).
Proof
.
by
intros
(?&?&?).
Qed
.
Lemma
Res_op
w1
w2
σ
1
σ
2
m1
m2
:
Res
w1
σ
1
m1
⋅
Res
w2
σ
2
m2
=
Res
(
w1
⋅
w2
)
(
σ
1
⋅
σ
2
)
(
m1
⋅
m2
).
Proof
.
done
.
Qed
.
Lemma
Res_unit
w
σ
m
:
unit
(
Res
w
σ
m
)
=
Res
(
unit
w
)
(
unit
σ
)
(
unit
m
).
Proof
.
done
.
Qed
.
Lemma
lookup_wld_op_l
n
r1
r2
i
P
:
✓
{
n
}
(
r1
⋅
r2
)
→
wld
r1
!!
i
={
n
}=
Some
P
→
(
wld
r1
⋅
wld
r2
)
!!
i
={
n
}=
Some
P
.
Proof
.
move
=>/
wld_validN
/(
_
i
)
Hval
Hi1P
;
move
:
Hi1P
Hval
;
rewrite
lookup_op
.
destruct
(
wld
r2
!!
i
)
as
[
P'
|]
eqn
:
Hi
;
rewrite
!
Hi
?(
right_id
_
_
)
//
=>->
?.
by
constructor
;
rewrite
(
agree_op_inv
P
P'
)
//
agree_idempotent
.
Qed
.
Lemma
lookup_wld_op_r
n
r1
r2
i
P
:
✓
{
n
}
(
r1
⋅
r2
)
→
wld
r2
!!
i
={
n
}=
Some
P
→
(
wld
r1
⋅
wld
r2
)
!!
i
={
n
}=
Some
P
.
Proof
.
rewrite
(
commutative
_
r1
)
(
commutative
_
(
wld
r1
))
;
apply
lookup_wld_op_l
.
Qed
.
End
res
.
Arguments
resRA
:
clear
implicits
.
Definition
res_map
{
Σ
A
B
}
(
f
:
A
-
n
>
B
)
(
r
:
res
Σ
A
)
:
res
Σ
B
:
=
Res
(
agree_map
(
later_map
f
)
<$>
(
wld
r
))
(
pst
r
)
(
icmra_map
Σ
(
laterC_map
f
)
(
gst
r
)).
Instance
res_map_ne
Σ
(
A
B
:
cofeT
)
(
f
:
A
-
n
>
B
)
:
(
∀
n
,
Proper
(
dist
n
==>
dist
n
)
f
)
→
∀
n
,
Proper
(
dist
n
==>
dist
n
)
(@
res_map
Σ
_
_
f
).
Proof
.
by
intros
Hf
n
[]
?
[???]
;
constructor
;
simpl
in
*
;
cofe_subst
.
Qed
.
Lemma
res_map_id
{
Σ
A
}
(
r
:
res
Σ
A
)
:
res_map
cid
r
≡
r
.
Proof
.
constructor
;
simpl
;
[|
done
|].
*
rewrite
-{
2
}(
map_fmap_id
(
wld
r
))
;
apply
map_fmap_setoid_ext
=>
i
y
?
/=.
rewrite
-{
2
}(
agree_map_id
y
)
;
apply
agree_map_ext
=>
y'
/=.
by
rewrite
later_map_id
.
*
rewrite
-{
2
}(
icmra_map_id
Σ
(
gst
r
))
;
apply
icmra_map_ext
=>
m
/=.
by
rewrite
later_map_id
.
Qed
.
Lemma
res_map_compose
{
Σ
A
B
C
}
(
f
:
A
-
n
>
B
)
(
g
:
B
-
n
>
C
)
(
r
:
res
Σ
A
)
:
res_map
(
g
◎
f
)
r
≡
res_map
g
(
res_map
f
r
).
Proof
.
constructor
;
simpl
;
[|
done
|].
*
rewrite
-
map_fmap_compose
;
apply
map_fmap_setoid_ext
=>
i
y
_
/=.
rewrite
-
agree_map_compose
;
apply
agree_map_ext
=>
y'
/=.
by
rewrite
later_map_compose
.
*
rewrite
-
icmra_map_compose
;
apply
icmra_map_ext
=>
m
/=.
by
rewrite
later_map_compose
.
Qed
.
Definition
resRA_map
{
Σ
A
B
}
(
f
:
A
-
n
>
B
)
:
resRA
Σ
A
-
n
>
resRA
Σ
B
:
=
CofeMor
(
res_map
f
:
resRA
Σ
A
→
resRA
Σ
B
).
Instance
res_map_cmra_monotone
{
Σ
}
{
A
B
:
cofeT
}
(
f
:
A
-
n
>
B
)
:
CMRAMonotone
(@
res_map
Σ
_
_
f
).
Proof
.
split
.
*
by
intros
n
r1
r2
;
rewrite
!
res_includedN
;
intros
(?&?&?)
;
split_ands'
;
simpl
;
try
apply
includedN_preserving
.
*
by
intros
n
r
(?&?&?)
;
split_ands'
;
simpl
;
try
apply
validN_preserving
.
Qed
.
Instance
resRA_map_contractive
{
Σ
A
B
}
:
Contractive
(@
resRA_map
Σ
A
B
).
Proof
.
intros
n
f
g
?
r
;
constructor
;
simpl
;
[|
done
|].
*
by
apply
(
mapRA_map_ne
_
(
agreeRA_map
(
laterC_map
f
))
(
agreeRA_map
(
laterC_map
g
))),
agreeRA_map_ne
,
laterC_map_contractive
.
*
by
apply
icmra_map_ne
,
laterC_map_contractive
.
Qed
.
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment