Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rice Wine
Iris
Commits
8af06c17
Commit
8af06c17
authored
Jan 04, 2016
by
Ralf Jung
Browse files
start work on the heap language
parent
c57dc59e
Changes
2
Hide whitespace changes
Inline
Side-by-side
_CoqProject
View file @
8af06c17
-Q . ""
-R autosubst/theories Autosubst
channel/heap_lang.v
0 → 100644
View file @
8af06c17
Require
Import
Autosubst
.
Autosubst
.
Inductive
expr
:
=
|
Var
(
x
:
var
)
|
Lit
(
T
:
Type
)
(
t
:
T
)
(* arbitrary Coq values become literals *)
|
App
(
e1
e2
:
expr
)
|
Lam
(
e
:
{
bind
expr
})
|
Pair
(
e1
e2
:
expr
)
|
Fst
(
e
:
expr
)
|
Snd
(
e
:
expr
)
|
InjL
(
e
:
expr
)
|
InjR
(
e
:
expr
)
|
Case
(
e0
:
expr
)
(
e1
:
{
bind
expr
})
(
e2
:
{
bind
expr
}).
Instance
Ids_expr
:
Ids
expr
.
derive
.
Defined
.
Instance
Rename_expr
:
Rename
expr
.
derive
.
Defined
.
Instance
Subst_expr
:
Subst
expr
.
derive
.
Defined
.
Instance
SubstLemmas_expr
:
SubstLemmas
expr
.
derive
.
Qed
.
Inductive
value
:
=
|
LitV
(
T
:
Type
)
(
t
:
T
)
(* arbitrary Coq values become literals *)
|
LamV
(
e
:
{
bind
expr
})
|
PairV
(
v1
v2
:
value
)
|
InjLV
(
v
:
value
)
|
InjRV
(
v
:
value
).
Fixpoint
v2e
(
v
:
value
)
:
expr
:
=
match
v
with
|
LitV
T
t
=>
Lit
T
t
|
LamV
e
=>
Lam
e
|
PairV
v1
v2
=>
Pair
(
v2e
v1
)
(
v2e
v2
)
|
InjLV
v
=>
InjL
(
v2e
v
)
|
InjRV
v
=>
InjR
(
v2e
v
)
end
.
Inductive
ectx
:
=
|
EmptyCtx
|
AppLCtx
(
K1
:
ectx
)
(
e2
:
expr
)
|
AppRCtx
(
v1
:
value
)
(
K2
:
ectx
)
|
PairLCtx
(
K1
:
ectx
)
(
e2
:
expr
)
|
PairRCtx
(
v1
:
value
)
(
K2
:
ectx
)
|
FstCtx
(
K
:
ectx
)
|
SndCtx
(
K
:
ectx
)
|
InjLCtx
(
K
:
ectx
)
|
InjRCtx
(
K
:
ectx
)
|
CaseCtx
(
K
:
ectx
)
(
e1
:
{
bind
expr
})
(
e2
:
{
bind
expr
}).
Fixpoint
fill
(
K
:
ectx
)
(
e
:
expr
)
:
=
match
K
with
|
EmptyCtx
=>
e
|
AppLCtx
K1
e2
=>
App
(
fill
K1
e
)
e2
|
AppRCtx
v1
K2
=>
App
(
v2e
v1
)
(
fill
K2
e
)
|
PairLCtx
K1
e2
=>
Pair
(
fill
K1
e
)
e2
|
PairRCtx
v1
K2
=>
Pair
(
v2e
v1
)
(
fill
K2
e
)
|
FstCtx
K
=>
Fst
(
fill
K
e
)
|
SndCtx
K
=>
Snd
(
fill
K
e
)
|
InjLCtx
K
=>
InjL
(
fill
K
e
)
|
InjRCtx
K
=>
InjR
(
fill
K
e
)
|
CaseCtx
K
e1
e2
=>
Case
(
fill
K
e
)
e1
e2
end
.
Fixpoint
comp_ctx
(
Ko
:
ectx
)
(
Ki
:
ectx
)
:
=
match
Ko
with
|
EmptyCtx
=>
Ki
|
AppLCtx
K1
e2
=>
AppLCtx
(
comp_ctx
K1
Ki
)
e2
|
AppRCtx
v1
K2
=>
AppRCtx
v1
(
comp_ctx
K2
Ki
)
|
PairLCtx
K1
e2
=>
PairLCtx
(
comp_ctx
K1
Ki
)
e2
|
PairRCtx
v1
K2
=>
PairRCtx
v1
(
comp_ctx
K2
Ki
)
|
FstCtx
K
=>
FstCtx
(
comp_ctx
K
Ki
)
|
SndCtx
K
=>
SndCtx
(
comp_ctx
K
Ki
)
|
InjLCtx
K
=>
InjLCtx
(
comp_ctx
K
Ki
)
|
InjRCtx
K
=>
InjRCtx
(
comp_ctx
K
Ki
)
|
CaseCtx
K
e1
e2
=>
CaseCtx
(
comp_ctx
K
Ki
)
e1
e2
end
.
Lemma
fill_empty
e
:
fill
EmptyCtx
e
=
e
.
Proof
.
reflexivity
.
Qed
.
Lemma
fill_comp
K1
K2
e
:
fill
K1
(
fill
K2
e
)
=
fill
(
comp_ctx
K1
K2
)
e
.
Proof
.
revert
K2
e
;
induction
K1
;
intros
K2
e
;
simpl
;
rewrite
?IHK1
,
?IHK2
;
reflexivity
.
Qed
.
Lemma
fill_inj_r
K
e1
e2
:
fill
K
e1
=
fill
K
e2
->
e1
=
e2
.
Proof
.
revert
e1
e2
;
induction
K
;
intros
el
er
;
simpl
;
intros
Heq
;
try
apply
IHK
;
inversion
Heq
;
reflexivity
.
Qed
.
Inductive
step
:
expr
->
expr
->
Prop
:
=
|
Beta
e
v
:
step
(
App
(
Lam
e
)
(
v2e
v
))
(
e
.[(
v2e
v
)/])
|
FstS
v1
v2
:
step
(
Fst
(
Pair
(
v2e
v1
)
(
v2e
v2
)))
(
v2e
v1
)
|
SndS
v1
v2
:
step
(
Fst
(
Pair
(
v2e
v1
)
(
v2e
v2
)))
(
v2e
v2
)
|
CaseL
v0
e1
e2
:
step
(
Case
(
InjL
(
v2e
v0
))
e1
e2
)
(
e1
.[(
v2e
v0
)/])
|
CaseR
v0
e1
e2
:
step
(
Case
(
InjR
(
v2e
v0
))
e1
e2
)
(
e2
.[(
v2e
v0
)/]).
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment