diff --git a/algebra/cmra_big_op.v b/algebra/cmra_big_op.v index 92312ba12cb5c4d360087d82ecd0dd4630a69417..f20066f74ffa00605eeedb43e2d9c499e0a1f6e1 100644 --- a/algebra/cmra_big_op.v +++ b/algebra/cmra_big_op.v @@ -349,13 +349,13 @@ Section gset. ([⋅ set] x ∈ X, f x) ≡ ([⋅ set] x ∈ X, g x). Proof. apply big_opS_forall; apply _. Qed. - Lemma big_opS_ne X n : + Global Instance big_opS_ne X n : Proper (pointwise_relation _ (dist n) ==> dist n) (big_opS (M:=M) X). Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed. - Lemma big_opS_proper' X : + Global Instance big_opS_proper' X : Proper (pointwise_relation _ (≡) ==> (≡)) (big_opS (M:=M) X). Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed. - Lemma big_opS_mono' X : + Global Instance big_opS_mono' X : Proper (pointwise_relation _ (≼) ==> (≼)) (big_opS (M:=M) X). Proof. intros f g Hf. apply big_opS_forall; apply _ || intros; apply Hf. Qed. @@ -433,13 +433,13 @@ Section gmultiset. ([⋅ mset] x ∈ X, f x) ≡ ([⋅ mset] x ∈ X, g x). Proof. apply big_opMS_forall; apply _. Qed. - Lemma big_opMS_ne X n : + Global Instance big_opMS_ne X n : Proper (pointwise_relation _ (dist n) ==> dist n) (big_opMS (M:=M) X). Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed. - Lemma big_opMS_proper' X : + Global Instance big_opMS_proper' X : Proper (pointwise_relation _ (≡) ==> (≡)) (big_opMS (M:=M) X). Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed. - Lemma big_opMS_mono' X : + Global Instance big_opMS_mono' X : Proper (pointwise_relation _ (≼) ==> (≼)) (big_opMS (M:=M) X). Proof. intros f g Hf. apply big_opMS_forall; apply _ || intros; apply Hf. Qed.