Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rice Wine
Iris
Commits
357f1cc2
Commit
357f1cc2
authored
Jun 09, 2018
by
Ralf Jung
Browse files
allow specializing a wand with a Coq-level proof of the premise
parent
b41623db
Changes
2
Hide whitespace changes
Inline
Side-by-side
tests/proofmode.v
View file @
357f1cc2
...
...
@@ -111,6 +111,10 @@ Lemma test_iSpecialize_auto_frame P Q R :
(
P
-
∗
True
-
∗
True
-
∗
Q
-
∗
R
)
-
∗
P
-
∗
Q
-
∗
R
.
Proof
.
iIntros
"H ? HQ"
.
by
iApply
(
"H"
with
"[$]"
).
Qed
.
Lemma
test_iSpecialize_Coq_entailment
P
Q
R
:
P
→
(
P
-
∗
Q
)
→
Q
.
Proof
.
iIntros
(
HP
HPQ
).
iDestruct
(
HPQ
$!
HP
)
as
"?"
.
done
.
Qed
.
Lemma
test_iEmp_intro
P
Q
R
`
{!
Affine
P
,
!
Persistent
Q
,
!
Affine
R
}
:
P
-
∗
Q
→
R
-
∗
emp
.
Proof
.
iIntros
"HP #HQ HR"
.
iEmpIntro
.
Qed
.
...
...
theories/proofmode/class_instances_bi.v
View file @
357f1cc2
...
...
@@ -806,6 +806,8 @@ Proof. rewrite /IntoForall=> HP. by rewrite HP persistently_forall. Qed.
Global
Instance
into_forall_embed
`
{
BiEmbed
PROP
PROP'
}
{
A
}
P
(
Φ
:
A
→
PROP
)
:
IntoForall
P
Φ
→
IntoForall
⎡
P
⎤
(
λ
a
,
⎡Φ
a
⎤
%
I
).
Proof
.
by
rewrite
/
IntoForall
-
embed_forall
=>
<-.
Qed
.
Global
Instance
into_forall_wand
P
Q
:
IntoForall
(
P
-
∗
Q
)
(
λ
_
:
bi_emp_valid
P
,
Q
).
Proof
.
rewrite
/
IntoForall
.
apply
forall_intro
=><-.
rewrite
emp_wand
//.
Qed
.
(* FromForall *)
Global
Instance
from_forall_forall
{
A
}
(
Φ
:
A
→
PROP
)
:
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment