Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rice Wine
Iris
Commits
2ccdb104
Commit
2ccdb104
authored
Feb 02, 2016
by
Robbert Krebbers
Browse files
Basic properties of frame preserving updates and those for products.
parent
4882ecf8
Changes
1
Hide whitespace changes
Inline
Side-by-side
modures/cmra.v
View file @
2ccdb104
...
...
@@ -318,6 +318,15 @@ Proof.
*
by
intros
Hx
z
?
;
exists
y
;
split
;
[
done
|
apply
(
Hx
z
)].
*
by
intros
Hx
z
n
?
;
destruct
(
Hx
z
n
)
as
(?&<-&?).
Qed
.
Lemma
ra_updateP_id
(
P
:
A
→
Prop
)
x
:
P
x
→
x
⇝
:
P
.
Proof
.
by
intros
?
z
n
?
;
exists
x
.
Qed
.
Lemma
ra_updateP_compose
(
P
Q
:
A
→
Prop
)
x
:
x
⇝
:
P
→
(
∀
y
,
P
y
→
y
⇝
:
Q
)
→
x
⇝
:
Q
.
Proof
.
intros
Hx
Hy
z
n
?.
destruct
(
Hx
z
n
)
as
(
y
&?&?)
;
auto
.
by
apply
(
Hy
y
).
Qed
.
Lemma
ra_updateP_weaken
(
P
Q
:
A
→
Prop
)
x
:
x
⇝
:
P
→
(
∀
y
,
P
y
→
Q
y
)
→
x
⇝
:
Q
.
Proof
.
eauto
using
ra_updateP_compose
,
ra_updateP_id
.
Qed
.
End
cmra
.
Hint
Extern
0
(
_
≼
{
0
}
_
)
=>
apply
cmra_includedN_0
.
...
...
@@ -384,14 +393,14 @@ Section discrete.
Qed
.
Definition
discreteRA
:
cmraT
:
=
CMRAT
(
cofe_mixin
A
)
discrete_cmra_mixin
discrete_extend_mixin
.
Lemma
discrete_updateP
(
x
:
A
)
(
P
:
A
→
Prop
)
`
{!
Inhabited
(
sig
P
)}
:
(
∀
z
,
✓
(
x
⋅
z
)
→
∃
y
,
P
y
∧
✓
(
y
⋅
z
))
→
(
x
:
discreteRA
)
⇝
:
P
.
Lemma
discrete_updateP
(
x
:
discreteR
A
)
(
P
:
A
→
Prop
)
`
{!
Inhabited
(
sig
P
)}
:
(
∀
z
,
✓
(
x
⋅
z
)
→
∃
y
,
P
y
∧
✓
(
y
⋅
z
))
→
x
⇝
:
P
.
Proof
.
intros
Hvalid
z
[|
n
]
;
[|
apply
Hvalid
].
by
destruct
(
_
:
Inhabited
(
sig
P
))
as
[[
y
?]]
;
exists
y
.
Qed
.
Lemma
discrete_update
(
x
y
:
A
)
:
(
∀
z
,
✓
(
x
⋅
z
)
→
✓
(
y
⋅
z
))
→
(
x
:
discreteRA
)
⇝
y
.
Lemma
discrete_update
(
x
y
:
discreteR
A
)
:
(
∀
z
,
✓
(
x
⋅
z
)
→
✓
(
y
⋅
z
))
→
x
⇝
y
.
Proof
.
intros
Hvalid
z
[|
n
]
;
[
done
|
apply
Hvalid
].
Qed
.
End
discrete
.
...
...
@@ -465,6 +474,15 @@ Section prod.
*
by
split
;
rewrite
/=
left_id
.
*
by
intros
?
[??]
;
split
;
apply
(
timeless
_
).
Qed
.
Lemma
prod_update
x
y
:
x
.
1
⇝
y
.
1
→
x
.
2
⇝
y
.
2
→
x
⇝
y
.
Proof
.
intros
??
z
n
[??]
;
split
;
simpl
in
*
;
auto
.
Qed
.
Lemma
prod_updateP
(
P
:
A
*
B
→
Prop
)
P1
P2
x
:
x
.
1
⇝
:
P1
→
x
.
2
⇝
:
P2
→
(
∀
y
,
P1
(
y
.
1
)
→
P2
(
y
.
2
)
→
P
y
)
→
x
⇝
:
P
.
Proof
.
intros
Hx1
Hx2
HP
z
n
[??]
;
simpl
in
*.
destruct
(
Hx1
(
z
.
1
)
n
)
as
(
a
&?&?),
(
Hx2
(
z
.
2
)
n
)
as
(
b
&?&?)
;
auto
.
exists
(
a
,
b
)
;
repeat
split
;
auto
.
Qed
.
End
prod
.
Arguments
prodRA
:
clear
implicits
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment