Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
Rice Wine
Iris
Commits
101c4e5d
Commit
101c4e5d
authored
May 09, 2018
by
Ralf Jung
Browse files
lemmas about □?p P and <affine>?p P
parent
7af1bbd3
Changes
1
Show whitespace changes
Inline
Side-by-side
theories/bi/derived_laws_bi.v
View file @
101c4e5d
...
...
@@ -1181,6 +1181,9 @@ Proof. destruct p; simpl; auto using intuitionistically_sep. Qed.
Lemma
intuitionistically_if_idemp
p
P
:
□
?p
□
?p
P
⊣
⊢
□
?p
P
.
Proof
.
destruct
p
;
simpl
;
auto
using
intuitionistically_idemp
.
Qed
.
Lemma
intuitionistically_if_unfold
p
P
:
□
?p
P
⊣
⊢
<
affine
>
?p
<
pers
>
?p
P
.
Proof
.
by
destruct
p
.
Qed
.
(* Properties of persistent propositions *)
Global
Instance
Persistent_proper
:
Proper
((
≡
)
==>
iff
)
(@
Persistent
PROP
).
Proof
.
solve_proper
.
Qed
.
...
...
@@ -1288,6 +1291,8 @@ Global Instance sep_affine P Q : Affine P → Affine Q → Affine (P ∗ Q).
Proof
.
rewrite
/
Affine
=>->
->.
by
rewrite
left_id
.
Qed
.
Global
Instance
affinely_affine
P
:
Affine
(<
affine
>
P
).
Proof
.
rewrite
/
bi_affinely
.
apply
_
.
Qed
.
Global
Instance
affinely_if_affine
p
P
:
Affine
P
→
Affine
(<
affine
>
?p
P
).
Proof
.
destruct
p
;
simpl
;
apply
_
.
Qed
.
Global
Instance
intuitionistically_affine
P
:
Affine
(
□
P
).
Proof
.
rewrite
/
bi_intuitionistically
.
apply
_
.
Qed
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment