Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Open sidebar
Rice Wine
Iris
Commits
0e4e3833
Commit
0e4e3833
authored
Mar 01, 2018
by
Robbert Krebbers
Browse files
Remove duplicate modality instances.
parent
a3775658
Changes
1
Show whitespace changes
Inline
Sidebyside
Showing
1 changed file
with
0 additions
and
80 deletions
+0
80
theories/proofmode/class_instances.v
theories/proofmode/class_instances.v
+0
80
No files found.
theories/proofmode/class_instances.v
View file @
0e4e3833
...
@@ 4,86 +4,6 @@ From iris.proofmode Require Export modality_instances classes.
...
@@ 4,86 +4,6 @@ From iris.proofmode Require Export modality_instances classes.
Set
Default
Proof
Using
"Type"
.
Set
Default
Proof
Using
"Type"
.
Import
bi
.
Import
bi
.
Section
bi_modalities
.
Context
{
PROP
:
bi
}.
Lemma
modality_persistently_mixin
:
modality_mixin
(@
bi_persistently
PROP
)
MIEnvId
MIEnvClear
.
Proof
.
split
;
simpl
;
eauto
using
equiv_entails_sym
,
persistently_intro
,
persistently_mono
,
persistently_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_persistently
:
=
Modality
_
modality_persistently_mixin
.
Lemma
modality_affinely_mixin
:
modality_mixin
(@
bi_affinely
PROP
)
MIEnvId
(
MIEnvForall
Affine
).
Proof
.
split
;
simpl
;
eauto
using
equiv_entails_sym
,
affinely_intro
,
affinely_mono
,
affinely_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_affinely
:
=
Modality
_
modality_affinely_mixin
.
Lemma
modality_affinely_persistently_mixin
:
modality_mixin
(
λ
P
:
PROP
,
□
P
)%
I
MIEnvId
MIEnvIsEmpty
.
Proof
.
split
;
simpl
;
eauto
using
equiv_entails_sym
,
affinely_persistently_emp
,
affinely_mono
,
persistently_mono
,
affinely_persistently_idemp
,
affinely_persistently_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_affinely_persistently
:
=
Modality
_
modality_affinely_persistently_mixin
.
Lemma
modality_plainly_mixin
:
modality_mixin
(@
bi_plainly
PROP
)
(
MIEnvForall
Plain
)
MIEnvClear
.
Proof
.
split
;
simpl
;
split_and
?
;
eauto
using
equiv_entails_sym
,
plainly_intro
,
plainly_mono
,
plainly_and
,
plainly_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_plainly
:
=
Modality
_
modality_plainly_mixin
.
Lemma
modality_affinely_plainly_mixin
:
modality_mixin
(
λ
P
:
PROP
,
■
P
)%
I
(
MIEnvForall
Plain
)
MIEnvIsEmpty
.
Proof
.
split
;
simpl
;
split_and
?
;
eauto
using
equiv_entails_sym
,
affinely_plainly_emp
,
affinely_intro
,
plainly_intro
,
affinely_mono
,
plainly_mono
,
affinely_plainly_idemp
,
affinely_plainly_and
,
affinely_plainly_sep_2
with
typeclass_instances
.
Qed
.
Definition
modality_affinely_plainly
:
=
Modality
_
modality_affinely_plainly_mixin
.
Lemma
modality_embed_mixin
`
{
BiEmbedding
PROP
PROP'
}
:
modality_mixin
(@
bi_embed
PROP
PROP'
_
)
(
MIEnvTransform
IntoEmbed
)
(
MIEnvTransform
IntoEmbed
).
Proof
.
split
;
simpl
;
split_and
?
;
eauto
using
equiv_entails_sym
,
bi_embed_emp
,
bi_embed_sep
,
bi_embed_and
.

intros
P
Q
.
rewrite
/
IntoEmbed
=>
>.
by
rewrite
bi_embed_affinely
bi_embed_persistently
.

by
intros
P
Q
>.
Qed
.
Definition
modality_embed
`
{
BiEmbedding
PROP
PROP'
}
:
=
Modality
_
modality_embed_mixin
.
End
bi_modalities
.
Section
sbi_modalities
.
Context
{
PROP
:
sbi
}.
Lemma
modality_laterN_mixin
n
:
modality_mixin
(@
sbi_laterN
PROP
n
)
(
MIEnvTransform
(
MaybeIntoLaterN
false
n
))
(
MIEnvTransform
(
MaybeIntoLaterN
false
n
)).
Proof
.
split
;
simpl
;
split_and
?
;
eauto
using
equiv_entails_sym
,
laterN_intro
,
laterN_mono
,
laterN_and
,
laterN_sep
with
typeclass_instances
.
rewrite
/
MaybeIntoLaterN
=>
P
Q
>.
by
rewrite
laterN_affinely_persistently_2
.
Qed
.
Definition
modality_laterN
n
:
=
Modality
_
(
modality_laterN_mixin
n
).
End
sbi_modalities
.
Section
bi_instances
.
Section
bi_instances
.
Context
{
PROP
:
bi
}.
Context
{
PROP
:
bi
}.
Implicit
Types
P
Q
R
:
PROP
.
Implicit
Types
P
Q
R
:
PROP
.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment