base.v 40.1 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
2
3
4
5
6
7
8
9
(* Copyright (c) 2012-2015, Robbert Krebbers. *)
(* This file is distributed under the terms of the BSD license. *)
(** This file collects type class interfaces, notations, and general theorems
that are used throughout the whole development. Most importantly it contains
abstract interfaces for ordered structures, collections, and various other data
structures. *)
Global Generalizable All Variables.
Global Set Automatic Coercions Import.
Global Set Asymmetric Patterns.
10
From Coq Require Export Morphisms RelationClasses List Bool Utf8 Program Setoid.
11
Obligation Tactic := idtac.
Robbert Krebbers's avatar
Robbert Krebbers committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

(** * General *)
(** Zipping lists. *)
Definition zip_with {A B C} (f : A  B  C) : list A  list B  list C :=
  fix go l1 l2 :=
  match l1, l2 with x1 :: l1, x2 :: l2 => f x1 x2 :: go l1 l2 | _ , _ => [] end.
Notation zip := (zip_with pair).

(** Ensure that [simpl] unfolds [id], [compose], and [flip] when fully
applied. *)
Arguments id _ _ /.
Arguments compose _ _ _ _ _ _ /.
Arguments flip _ _ _ _ _ _ /.
Arguments const _ _ _ _ /.
Typeclasses Transparent id compose flip const.
Instance: Params (@pair) 2.

(** Change [True] and [False] into notations in order to enable overloading.
We will use this in the file [assertions] to give [True] and [False] a
different interpretation in [assert_scope] used for assertions of our axiomatic
semantics. *)
Notation "'True'" := True : type_scope.
Notation "'False'" := False : type_scope.

Notation curry := prod_curry.
Notation uncurry := prod_uncurry.
Definition curry3 {A B C D} (f : A  B  C  D) (p : A * B * C) : D :=
  let '(a,b,c) := p in f a b c.
Definition curry4 {A B C D E} (f : A  B  C  D  E) (p : A * B * C * D) : E :=
  let '(a,b,c,d) := p in f a b c d.

(** Throughout this development we use [C_scope] for all general purpose
notations that do not belong to a more specific scope. *)
Delimit Scope C_scope with C.
Global Open Scope C_scope.

(** Introduce some Haskell style like notations. *)
Notation "(=)" := eq (only parsing) : C_scope.
Notation "( x =)" := (eq x) (only parsing) : C_scope.
Notation "(= x )" := (λ y, eq y x) (only parsing) : C_scope.
Notation "(≠)" := (λ x y, x  y) (only parsing) : C_scope.
Notation "( x ≠)" := (λ y, x  y) (only parsing) : C_scope.
Notation "(≠ x )" := (λ y, y  x) (only parsing) : C_scope.

56
Hint Extern 0 (_ = _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
Hint Extern 100 (_  _) => discriminate.

Notation "(→)" := (λ A B, A  B) (only parsing) : C_scope.
Notation "( A →)" := (λ B, A  B) (only parsing) : C_scope.
Notation "(→ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "t $ r" := (t r)
  (at level 65, right associativity, only parsing) : C_scope.
Notation "($)" := (λ f x, f x) (only parsing) : C_scope.
Notation "($ x )" := (λ f, f x) (only parsing) : C_scope.

Infix "∘" := compose : C_scope.
Notation "(∘)" := compose (only parsing) : C_scope.
Notation "( f ∘)" := (compose f) (only parsing) : C_scope.
Notation "(∘ f )" := (λ g, compose g f) (only parsing) : C_scope.

Notation "(∧)" := and (only parsing) : C_scope.
Notation "( A ∧)" := (and A) (only parsing) : C_scope.
Notation "(∧ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(∨)" := or (only parsing) : C_scope.
Notation "( A ∨)" := (or A) (only parsing) : C_scope.
Notation "(∨ B )" := (λ A, A  B) (only parsing) : C_scope.

Notation "(↔)" := iff (only parsing) : C_scope.
Notation "( A ↔)" := (iff A) (only parsing) : C_scope.
Notation "(↔ B )" := (λ A, A  B) (only parsing) : C_scope.

Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_  _) => symmetry; assumption.

Notation "( x ,)" := (pair x) (only parsing) : C_scope.
Notation "(, y )" := (λ x, (x,y)) (only parsing) : C_scope.

Notation "p .1" := (fst p) (at level 10, format "p .1").
Notation "p .2" := (snd p) (at level 10, format "p .2").

Definition prod_map {A A' B B'} (f : A  A') (g : B  B')
  (p : A * B) : A' * B' := (f (p.1), g (p.2)).
Arguments prod_map {_ _ _ _} _ _ !_ /.
Definition prod_zip {A A' A'' B B' B''} (f : A  A'  A'') (g : B  B'  B'')
    (p : A * B) (q : A' * B') : A'' * B'' := (f (p.1) (q.1), g (p.2) (q.2)).
Arguments prod_zip {_ _ _ _ _ _} _ _ !_ !_ /.

(** Set convenient implicit arguments for [existT] and introduce notations. *)
Arguments existT {_ _} _ _.
Arguments proj1_sig {_ _} _.
Notation "x ↾ p" := (exist _ x p) (at level 20) : C_scope.
Notation "` x" := (proj1_sig x) (at level 10, format "` x") : C_scope.

(** * Type classes *)
(** ** Provable propositions *)
(** This type class collects provable propositions. It is useful to constraint
type classes by arbitrary propositions. *)
Class PropHolds (P : Prop) := prop_holds: P.

Hint Extern 0 (PropHolds _) => assumption : typeclass_instances.
Instance: Proper (iff ==> iff) PropHolds.
Proof. repeat intro; trivial. Qed.

Ltac solve_propholds :=
  match goal with
  | |- PropHolds (?P) => apply _
  | |- ?P => change (PropHolds P); apply _
  end.

(** ** Decidable propositions *)
(** This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions. For example to declare a parameter expressing decidable equality
on a type [A] we write [`{∀ x y : A, Decision (x = y)}] and use it by writing
[decide (x = y)]. *)
Class Decision (P : Prop) := decide : {P} + {¬P}.
Arguments decide _ {_}.

(** ** Inhabited types *)
(** This type class collects types that are inhabited. *)
133
Class Inhabited (A : Type) : Type := populate { inhabitant : A }.
Robbert Krebbers's avatar
Robbert Krebbers committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
Arguments populate {_} _.

Instance unit_inhabited: Inhabited unit := populate ().
Instance list_inhabited {A} : Inhabited (list A) := populate [].
Instance prod_inhabited {A B} (iA : Inhabited A)
    (iB : Inhabited B) : Inhabited (A * B) :=
  match iA, iB with populate x, populate y => populate (x,y) end.
Instance sum_inhabited_l {A B} (iA : Inhabited A) : Inhabited (A + B) :=
  match iA with populate x => populate (inl x) end.
Instance sum_inhabited_r {A B} (iB : Inhabited A) : Inhabited (A + B) :=
  match iB with populate y => populate (inl y) end.
Instance option_inhabited {A} : Inhabited (option A) := populate None.

(** ** Proof irrelevant types *)
(** This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it. *)
Class ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.

(** ** Setoid equality *)
(** We define an operational type class for setoid equality. This is based on
(Spitters/van der Weegen, 2011). *)
Class Equiv A := equiv: relation A.
Infix "≡" := equiv (at level 70, no associativity) : C_scope.
Notation "(≡)" := equiv (only parsing) : C_scope.
Notation "( X ≡)" := (equiv X) (only parsing) : C_scope.
Notation "(≡ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "(≢)" := (λ X Y, ¬X  Y) (only parsing) : C_scope.
Notation "X ≢ Y":= (¬X  Y) (at level 70, no associativity) : C_scope.
Notation "( X ≢)" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "(≢ X )" := (λ Y, Y  X) (only parsing) : C_scope.

(** The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse. *)
170
171
172
173
174
Class LeibnizEquiv A `{Equiv A} := leibniz_equiv x y : x  y  x = y.
Lemma leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (@equiv A _)} (x y : A) :
  x  y  x = y.
Proof. split. apply leibniz_equiv. intros ->; reflexivity. Qed.
 
Robbert Krebbers's avatar
Robbert Krebbers committed
175
176
177
Ltac fold_leibniz := repeat
  match goal with
  | H : context [ @equiv ?A _ _ _ ] |- _ =>
178
    setoid_rewrite (leibniz_equiv_iff (A:=A)) in H
Robbert Krebbers's avatar
Robbert Krebbers committed
179
  | |- context [ @equiv ?A _ _ _ ] =>
180
    setoid_rewrite (leibniz_equiv_iff (A:=A))
Robbert Krebbers's avatar
Robbert Krebbers committed
181
182
183
184
  end.
Ltac unfold_leibniz := repeat
  match goal with
  | H : context [ @eq ?A _ _ ] |- _ =>
185
    setoid_rewrite <-(leibniz_equiv_iff (A:=A)) in H
Robbert Krebbers's avatar
Robbert Krebbers committed
186
  | |- context [ @eq ?A _ _ ] =>
187
    setoid_rewrite <-(leibniz_equiv_iff (A:=A))
Robbert Krebbers's avatar
Robbert Krebbers committed
188
189
  end.

190
191
Definition equivL {A} : Equiv A := (=).

Robbert Krebbers's avatar
Robbert Krebbers committed
192
193
194
195
196
197
198
199
200
(** A [Params f n] instance forces the setoid rewriting mechanism not to
rewrite in the first [n] arguments of the function [f]. We will declare such
instances for all operational type classes in this development. *)
Instance: Params (@equiv) 2.

(** The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality. *)
Instance equiv_default_relation `{Equiv A} : DefaultRelation () | 3.
201
Hint Extern 0 (_  _) => reflexivity.
Robbert Krebbers's avatar
Robbert Krebbers committed
202
203
204
205
206
207
208
209
210
211
Hint Extern 0 (_  _) => symmetry; assumption.

(** ** Operations on collections *)
(** We define operational type classes for the traditional operations and
relations on collections: the empty collection [∅], the union [(∪)],
intersection [(∩)], and difference [(∖)], the singleton [{[_]}], the subset
[(⊆)] and element of [(∈)] relation, and disjointess [(⊥)]. *)
Class Empty A := empty: A.
Notation "∅" := empty : C_scope.

212
213
214
Class Top A := top : A.
Notation "⊤" := top : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
Class Union A := union: A  A  A.
Instance: Params (@union) 2.
Infix "∪" := union (at level 50, left associativity) : C_scope.
Notation "(∪)" := union (only parsing) : C_scope.
Notation "( x ∪)" := (union x) (only parsing) : C_scope.
Notation "(∪ x )" := (λ y, union y x) (only parsing) : C_scope.
Infix "∪*" := (zip_with ()) (at level 50, left associativity) : C_scope.
Notation "(∪*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∪**" := (zip_with (zip_with ()))
  (at level 50, left associativity) : C_scope.
Infix "∪*∪**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.

Definition union_list `{Empty A} `{Union A} : list A  A := fold_right () .
Arguments union_list _ _ _ !_ /.
Notation "⋃ l" := (union_list l) (at level 20, format "⋃  l") : C_scope.

Class Intersection A := intersection: A  A  A.
Instance: Params (@intersection) 2.
Infix "∩" := intersection (at level 40) : C_scope.
Notation "(∩)" := intersection (only parsing) : C_scope.
Notation "( x ∩)" := (intersection x) (only parsing) : C_scope.
Notation "(∩ x )" := (λ y, intersection y x) (only parsing) : C_scope.

Class Difference A := difference: A  A  A.
Instance: Params (@difference) 2.
Infix "∖" := difference (at level 40) : C_scope.
Notation "(∖)" := difference (only parsing) : C_scope.
Notation "( x ∖)" := (difference x) (only parsing) : C_scope.
Notation "(∖ x )" := (λ y, difference y x) (only parsing) : C_scope.
Infix "∖*" := (zip_with ()) (at level 40, left associativity) : C_scope.
Notation "(∖*)" := (zip_with ()) (only parsing) : C_scope.
Infix "∖**" := (zip_with (zip_with ()))
  (at level 40, left associativity) : C_scope.
Infix "∖*∖**" := (zip_with (prod_zip () (*)))
  (at level 50, left associativity) : C_scope.

Class Singleton A B := singleton: A  B.
Instance: Params (@singleton) 3.
Notation "{[ x ]}" := (singleton x) (at level 1) : C_scope.
Notation "{[ x ; y ; .. ; z ]}" :=
  (union .. (union (singleton x) (singleton y)) .. (singleton z))
  (at level 1) : C_scope.
Notation "{[ x , y ]}" := (singleton (x,y))
  (at level 1, y at next level) : C_scope.
Notation "{[ x , y , z ]}" := (singleton (x,y,z))
  (at level 1, y at next level, z at next level) : C_scope.

Class SubsetEq A := subseteq: relation A.
Instance: Params (@subseteq) 2.
Infix "⊆" := subseteq (at level 70) : C_scope.
Notation "(⊆)" := subseteq (only parsing) : C_scope.
Notation "( X ⊆ )" := (subseteq X) (only parsing) : C_scope.
Notation "( ⊆ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "X ⊈ Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊈)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊈ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊈ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Infix "⊆*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊆*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊆**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊆1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊆2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊆1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊆2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.

Hint Extern 0 (_  _) => reflexivity.
Hint Extern 0 (_ * _) => reflexivity.
Hint Extern 0 (_ ** _) => reflexivity.

Definition strict {A} (R : relation A) : relation A := λ X Y, R X Y  ¬R Y X.
Instance: Params (@strict) 2.
Infix "⊂" := (strict ()) (at level 70) : C_scope.
Notation "(⊂)" := (strict ()) (only parsing) : C_scope.
Notation "( X ⊂ )" := (strict () X) (only parsing) : C_scope.
Notation "( ⊂ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Notation "X ⊄  Y" := (¬X  Y) (at level 70) : C_scope.
Notation "(⊄)" := (λ X Y, X  Y) (only parsing) : C_scope.
Notation "( X ⊄ )" := (λ Y, X  Y) (only parsing) : C_scope.
Notation "( ⊄ X )" := (λ Y, Y  X) (only parsing) : C_scope.

(** The class [Lexico A] is used for the lexicographic order on [A]. This order
is used to create finite maps, finite sets, etc, and is typically different from
the order [(⊆)]. *)
Class Lexico A := lexico: relation A.

Class ElemOf A B := elem_of: A  B  Prop.
Instance: Params (@elem_of) 3.
Infix "∈" := elem_of (at level 70) : C_scope.
Notation "(∈)" := elem_of (only parsing) : C_scope.
Notation "( x ∈)" := (elem_of x) (only parsing) : C_scope.
Notation "(∈ X )" := (λ x, elem_of x X) (only parsing) : C_scope.
Notation "x ∉ X" := (¬x  X) (at level 80) : C_scope.
Notation "(∉)" := (λ x X, x  X) (only parsing) : C_scope.
Notation "( x ∉)" := (λ X, x  X) (only parsing) : C_scope.
Notation "(∉ X )" := (λ x, x  X) (only parsing) : C_scope.

Class Disjoint A := disjoint : A  A  Prop.
Instance: Params (@disjoint) 2.
Infix "⊥" := disjoint (at level 70) : C_scope.
Notation "(⊥)" := disjoint (only parsing) : C_scope.
Notation "( X ⊥.)" := (disjoint X) (only parsing) : C_scope.
317
Notation "(.⊥ X )" := (λ Y, Y  X) (only parsing) : C_scope.
Robbert Krebbers's avatar
Robbert Krebbers committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
Infix "⊥*" := (Forall2 ()) (at level 70) : C_scope.
Notation "(⊥*)" := (Forall2 ()) (only parsing) : C_scope.
Infix "⊥**" := (Forall2 (*)) (at level 70) : C_scope.
Infix "⊥1*" := (Forall2 (λ p q, p.1  q.1)) (at level 70) : C_scope.
Infix "⊥2*" := (Forall2 (λ p q, p.2  q.2)) (at level 70) : C_scope.
Infix "⊥1**" := (Forall2 (λ p q, p.1 * q.1)) (at level 70) : C_scope.
Infix "⊥2**" := (Forall2 (λ p q, p.2 * q.2)) (at level 70) : C_scope.
Hint Extern 0 (_  _) => symmetry; eassumption.
Hint Extern 0 (_ * _) => symmetry; eassumption.

Class DisjointE E A := disjointE : E  A  A  Prop.
Instance: Params (@disjointE) 4.
Notation "X ⊥{ Γ } Y" := (disjointE Γ X Y)
  (at level 70, format "X  ⊥{ Γ }  Y") : C_scope.
Notation "(⊥{ Γ } )" := (disjointE Γ) (only parsing, Γ at level 1) : C_scope.
Notation "Xs ⊥{ Γ }* Ys" := (Forall2 ({Γ}) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ }*  Ys") : C_scope.
Notation "(⊥{ Γ }* )" := (Forall2 ({Γ}))
  (only parsing, Γ at level 1) : C_scope.
Notation "X ⊥{ Γ1 , Γ2 , .. , Γ3 } Y" := (disjoint (pair .. (Γ1, Γ2) .. Γ3) X Y)
  (at level 70, format "X  ⊥{ Γ1 , Γ2 , .. , Γ3 }  Y") : C_scope.
Notation "Xs ⊥{ Γ1 , Γ2 , .. , Γ3 }* Ys" :=
  (Forall2 (disjoint (pair .. (Γ1, Γ2) .. Γ3)) Xs Ys)
  (at level 70, format "Xs  ⊥{ Γ1 ,  Γ2 , .. , Γ3 }*  Ys") : C_scope.
Hint Extern 0 (_ {_} _) => symmetry; eassumption.

Class DisjointList A := disjoint_list : list A  Prop.
Instance: Params (@disjoint_list) 2.
Notation "⊥ Xs" := (disjoint_list Xs) (at level 20, format "⊥  Xs") : C_scope.

Section disjoint_list.
  Context `{Disjoint A, Union A, Empty A}.
  Inductive disjoint_list_default : DisjointList A :=
    | disjoint_nil_2 :  (@nil A)
    | disjoint_cons_2 (X : A) (Xs : list A) : X   Xs   Xs   (X :: Xs).
  Global Existing Instance disjoint_list_default.

  Lemma disjoint_list_nil  :  @nil A  True.
  Proof. split; constructor. Qed.
  Lemma disjoint_list_cons X Xs :  (X :: Xs)  X   Xs   Xs.
  Proof. split. inversion_clear 1; auto. intros [??]. constructor; auto. Qed.
End disjoint_list.

Class Filter A B := filter:  (P : A  Prop) `{ x, Decision (P x)}, B  B.

(** ** Monadic operations *)
(** We define operational type classes for the monadic operations bind, join 
and fmap. We use these type classes merely for convenient overloading of
notations and do not formalize any theory on monads (we do not even define a
class with the monad laws). *)
Class MRet (M : Type  Type) := mret:  {A}, A  M A.
Arguments mret {_ _ _} _.
370
Instance: Params (@mret) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
371
372
Class MBind (M : Type  Type) := mbind :  {A B}, (A  M B)  M A  M B.
Arguments mbind {_ _ _ _} _ !_ /.
373
Instance: Params (@mbind) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
374
375
Class MJoin (M : Type  Type) := mjoin:  {A}, M (M A)  M A.
Arguments mjoin {_ _ _} !_ /.
376
Instance: Params (@mjoin) 3.
Robbert Krebbers's avatar
Robbert Krebbers committed
377
378
Class FMap (M : Type  Type) := fmap :  {A B}, (A  B)  M A  M B.
Arguments fmap {_ _ _ _} _ !_ /.
379
Instance: Params (@fmap) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
380
381
Class OMap (M : Type  Type) := omap:  {A B}, (A  option B)  M A  M B.
Arguments omap {_ _ _ _} _ !_ /.
382
Instance: Params (@omap) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

Notation "m ≫= f" := (mbind f m) (at level 60, right associativity) : C_scope.
Notation "( m ≫=)" := (λ f, mbind f m) (only parsing) : C_scope.
Notation "(≫= f )" := (mbind f) (only parsing) : C_scope.
Notation "(≫=)" := (λ m f, mbind f m) (only parsing) : C_scope.

Notation "x ← y ; z" := (y = (λ x : _, z))
  (at level 65, only parsing, right associativity) : C_scope.
Infix "<$>" := fmap (at level 60, right associativity) : C_scope.
Notation "' ( x1 , x2 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1, x2) := x in z))
  (at level 65, only parsing, right associativity) : C_scope.
Notation "' ( x1 , x2 , x3 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3) := x in z))
  (at level 65, only parsing, right associativity) : C_scope.
Notation "' ( x1 , x2 , x3  , x4 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4) := x in z))
  (at level 65, only parsing, right associativity) : C_scope.
Notation "' ( x1 , x2 , x3  , x4 , x5 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5) := x in z))
  (at level 65, only parsing, right associativity) : C_scope.
Notation "' ( x1 , x2 , x3  , x4 , x5 , x6 ) ← y ; z" :=
  (y = (λ x : _, let ' (x1,x2,x3,x4,x5,x6) := x in z))
  (at level 65, only parsing, right associativity) : C_scope.

Notation "ps .*1" := (fmap (M:=list) fst ps)
  (at level 10, format "ps .*1").
Notation "ps .*2" := (fmap (M:=list) snd ps)
  (at level 10, format "ps .*2").

Class MGuard (M : Type  Type) :=
  mguard:  P {dec : Decision P} {A}, (P  M A)  M A.
Arguments mguard _ _ _ !_ _ _ /.
Notation "'guard' P ; o" := (mguard P (λ _, o))
  (at level 65, only parsing, right associativity) : C_scope.
Notation "'guard' P 'as' H ; o" := (mguard P (λ H, o))
  (at level 65, only parsing, right associativity) : C_scope.

(** ** Operations on maps *)
(** In this section we define operational type classes for the operations
on maps. In the file [fin_maps] we will axiomatize finite maps.
The function look up [m !! k] should yield the element at key [k] in [m]. *)
Class Lookup (K A M : Type) := lookup: K  M  option A.
Instance: Params (@lookup) 4.
Notation "m !! i" := (lookup i m) (at level 20) : C_scope.
Notation "(!!)" := lookup (only parsing) : C_scope.
Notation "( m !!)" := (λ i, m !! i) (only parsing) : C_scope.
Notation "(!! i )" := (lookup i) (only parsing) : C_scope.
Arguments lookup _ _ _ _ !_ !_ / : simpl nomatch.

433
434
435
436
437
(** The singleton map *)
Class SingletonM K A M := singletonM: K  A  M.
Instance: Params (@singletonM) 5.
Notation "{[ x ↦ y ]}" := (singletonM x y) (at level 1) : C_scope.

Robbert Krebbers's avatar
Robbert Krebbers committed
438
439
440
(** The function insert [<[k:=a]>m] should update the element at key [k] with
value [a] in [m]. *)
Class Insert (K A M : Type) := insert: K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
441
Instance: Params (@insert) 5.
Robbert Krebbers's avatar
Robbert Krebbers committed
442
443
444
445
446
447
448
449
Notation "<[ k := a ]>" := (insert k a)
  (at level 5, right associativity, format "<[ k := a ]>") : C_scope.
Arguments insert _ _ _ _ !_ _ !_ / : simpl nomatch.

(** The function delete [delete k m] should delete the value at key [k] in
[m]. If the key [k] is not a member of [m], the original map should be
returned. *)
Class Delete (K M : Type) := delete: K  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
450
Instance: Params (@delete) 4.
Robbert Krebbers's avatar
Robbert Krebbers committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
Arguments delete _ _ _ !_ !_ / : simpl nomatch.

(** The function [alter f k m] should update the value at key [k] using the
function [f], which is called with the original value. *)
Class Alter (K A M : Type) := alter: (A  A)  K  M  M.
Instance: Params (@alter) 5.
Arguments alter {_ _ _ _} _ !_ !_ / : simpl nomatch.

(** The function [alter f k m] should update the value at key [k] using the
function [f], which is called with the original value at key [k] or [None]
if [k] is not a member of [m]. The value at [k] should be deleted if [f] 
yields [None]. *)
Class PartialAlter (K A M : Type) :=
  partial_alter: (option A  option A)  K  M  M.
Instance: Params (@partial_alter) 4.
Arguments partial_alter _ _ _ _ _ !_ !_ / : simpl nomatch.

(** The function [dom C m] should yield the domain of [m]. That is a finite
collection of type [C] that contains the keys that are a member of [m]. *)
Class Dom (M C : Type) := dom: M  C.
Instance: Params (@dom) 3.
Arguments dom {_} _ {_} !_ / : simpl nomatch, clear implicits.

(** The function [merge f m1 m2] should merge the maps [m1] and [m2] by
constructing a new map whose value at key [k] is [f (m1 !! k) (m2 !! k)].*)
Class Merge (M : Type  Type) :=
  merge:  {A B C}, (option A  option B  option C)  M A  M B  M C.
Instance: Params (@merge) 4.
Arguments merge _ _ _ _ _ _ !_ !_ / : simpl nomatch.

(** The function [union_with f m1 m2] is supposed to yield the union of [m1]
and [m2] using the function [f] to combine values of members that are in
both [m1] and [m2]. *)
Class UnionWith (A M : Type) :=
  union_with: (A  A  option A)  M  M  M.
Instance: Params (@union_with) 3.
Arguments union_with {_ _ _} _ !_ !_ / : simpl nomatch.

(** Similarly for intersection and difference. *)
Class IntersectionWith (A M : Type) :=
  intersection_with: (A  A  option A)  M  M  M.
Instance: Params (@intersection_with) 3.
Arguments intersection_with {_ _ _} _ !_ !_ / : simpl nomatch.

Class DifferenceWith (A M : Type) :=
  difference_with: (A  A  option A)  M  M  M.
Instance: Params (@difference_with) 3.
Arguments difference_with {_ _ _} _ !_ !_ / : simpl nomatch.

Definition intersection_with_list `{IntersectionWith A M}
  (f : A  A  option A) : M  list M  M := fold_right (intersection_with f).
Arguments intersection_with_list _ _ _ _ _ !_ /.

Class LookupE (E K A M : Type) := lookupE: E  K  M  option A.
Instance: Params (@lookupE) 6.
Notation "m !!{ Γ } i" := (lookupE Γ i m)
  (at level 20, format "m  !!{ Γ }  i") : C_scope.
Notation "(!!{ Γ } )" := (lookupE Γ) (only parsing, Γ at level 1) : C_scope.
Arguments lookupE _ _ _ _ _ _ !_ !_ / : simpl nomatch.

Class InsertE (E K A M : Type) := insertE: E  K  A  M  M.
Robbert Krebbers's avatar
Robbert Krebbers committed
512
Instance: Params (@insertE) 6.
Robbert Krebbers's avatar
Robbert Krebbers committed
513
514
515
516
517
518
519
Notation "<[ k := a ]{ Γ }>" := (insertE Γ k a)
  (at level 5, right associativity, format "<[ k := a ]{ Γ }>") : C_scope.
Arguments insertE _ _ _ _ _ _ !_ _ !_ / : simpl nomatch.

(** ** Common properties *)
(** These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++)] it
520
521
522
523
allows us to write [inj (k ++)] instead of [app_inv_head k]. *)
Class Inj {A B} (R : relation A) (S : relation B) (f : A  B) : Prop :=
  inj x y : S (f x) (f y)  R x y.
Class Inj2 {A B C} (R1 : relation A) (R2 : relation B)
Robbert Krebbers's avatar
Robbert Krebbers committed
524
    (S : relation C) (f : A  B  C) : Prop :=
525
  inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2)  R1 x1 y1  R2 x2 y2.
Robbert Krebbers's avatar
Robbert Krebbers committed
526
Class Cancel {A B} (S : relation B) (f : A  B) (g : B  A) : Prop :=
527
528
529
530
531
532
533
  cancel :  x, S (f (g x)) x.
Class Surj {A B} (R : relation B) (f : A  B) :=
  surj y :  x, R (f x) y.
Class IdemP {A} (R : relation A) (f : A  A  A) : Prop :=
  idemp x : R (f x x) x.
Class Comm {A B} (R : relation A) (f : B  B  A) : Prop :=
  comm x y : R (f x y) (f y x).
Robbert Krebbers's avatar
Robbert Krebbers committed
534
Class LeftId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
535
  left_id x : R (f i x) x.
Robbert Krebbers's avatar
Robbert Krebbers committed
536
Class RightId {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
537
538
539
  right_id x : R (f x i) x.
Class Assoc {A} (R : relation A) (f : A  A  A) : Prop :=
  assoc x y z : R (f x (f y z)) (f (f x y) z).
Robbert Krebbers's avatar
Robbert Krebbers committed
540
Class LeftAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
541
  left_absorb x : R (f i x) i.
Robbert Krebbers's avatar
Robbert Krebbers committed
542
Class RightAbsorb {A} (R : relation A) (i : A) (f : A  A  A) : Prop :=
543
544
545
  right_absorb x : R (f x i) i.
Class AntiSymm {A} (R S : relation A) : Prop :=
  anti_symm x y : S x y  S y x  R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
546
547
Class Total {A} (R : relation A) := total x y : R x y  R y x.
Class Trichotomy {A} (R : relation A) :=
548
  trichotomy x y : R x y  x = y  R y x.
Robbert Krebbers's avatar
Robbert Krebbers committed
549
Class TrichotomyT {A} (R : relation A) :=
550
  trichotomyT x y : {R x y} + {x = y} + {R y x}.
Robbert Krebbers's avatar
Robbert Krebbers committed
551
552

Arguments irreflexivity {_} _ {_} _ _.
553
554
Arguments inj {_ _ _ _} _ {_} _ _ _.
Arguments inj2 {_ _ _ _ _ _} _ {_} _ _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
555
Arguments cancel {_ _ _} _ _ {_} _.
556
557
558
Arguments surj {_ _ _} _ {_} _.
Arguments idemp {_ _} _ {_} _.
Arguments comm {_ _ _} _ {_} _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
559
560
Arguments left_id {_ _} _ _ {_} _.
Arguments right_id {_ _} _ _ {_} _.
561
Arguments assoc {_ _} _ {_} _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
562
563
Arguments left_absorb {_ _} _ _ {_} _.
Arguments right_absorb {_ _} _ _ {_} _.
564
Arguments anti_symm {_ _} _ {_} _ _ _ _.
Robbert Krebbers's avatar
Robbert Krebbers committed
565
566
567
568
Arguments total {_} _ {_} _ _.
Arguments trichotomy {_} _ {_} _ _.
Arguments trichotomyT {_} _ {_} _ _.

569
Instance id_inj {A} : Inj (=) (=) (@id A).
Robbert Krebbers's avatar
Robbert Krebbers committed
570
571
572
573
574
Proof. intros ??; auto. Qed.

(** The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism. *)
575
Lemma idemp_L {A} (f : A  A  A) `{!IdemP (=) f} x : f x x = x.
Robbert Krebbers's avatar
Robbert Krebbers committed
576
Proof. auto. Qed.
577
Lemma comm_L {A B} (f : B  B  A) `{!Comm (=) f} x y :
Robbert Krebbers's avatar
Robbert Krebbers committed
578
579
580
581
582
583
  f x y = f y x.
Proof. auto. Qed.
Lemma left_id_L {A} (i : A) (f : A  A  A) `{!LeftId (=) i f} x : f i x = x.
Proof. auto. Qed.
Lemma right_id_L {A} (i : A) (f : A  A  A) `{!RightId (=) i f} x : f x i = x.
Proof. auto. Qed.
584
Lemma assoc_L {A} (f : A  A  A) `{!Assoc (=) f} x y z :
Robbert Krebbers's avatar
Robbert Krebbers committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
  f x (f y z) = f (f x y) z.
Proof. auto. Qed.
Lemma left_absorb_L {A} (i : A) (f : A  A  A) `{!LeftAbsorb (=) i f} x :
  f i x = i.
Proof. auto. Qed.
Lemma right_absorb_L {A} (i : A) (f : A  A  A) `{!RightAbsorb (=) i f} x :
  f x i = i.
Proof. auto. Qed.

(** ** Axiomatization of ordered structures *)
(** The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [⊆] to support multiple orders on the same type. *)
Class PartialOrder {A} (R : relation A) : Prop := {
  partial_order_pre :> PreOrder R;
599
  partial_order_anti_symm :> AntiSymm (=) R
Robbert Krebbers's avatar
Robbert Krebbers committed
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
}.
Class TotalOrder {A} (R : relation A) : Prop := {
  total_order_partial :> PartialOrder R;
  total_order_trichotomy :> Trichotomy (strict R)
}.

(** We do not use a setoid equality in the following interfaces to avoid the
need for proofs that the relations and operations are proper. Instead, we
define setoid equality generically [λ X Y, X ⊆ Y ∧ Y ⊆ X]. *)
Class EmptySpec A `{Empty A, SubsetEq A} : Prop := subseteq_empty X :   X.
Class JoinSemiLattice A `{SubsetEq A, Union A} : Prop := {
  join_semi_lattice_pre :>> PreOrder ();
  union_subseteq_l X Y : X  X  Y;
  union_subseteq_r X Y : Y  X  Y;
  union_least X Y Z : X  Z  Y  Z  X  Y  Z
}.
Class MeetSemiLattice A `{SubsetEq A, Intersection A} : Prop := {
  meet_semi_lattice_pre :>> PreOrder ();
  intersection_subseteq_l X Y : X  Y  X;
  intersection_subseteq_r X Y : X  Y  Y;
  intersection_greatest X Y Z : Z  X  Z  Y  Z  X  Y
}.
Class Lattice A `{SubsetEq A, Union A, Intersection A} : Prop := {
  lattice_join :>> JoinSemiLattice A;
  lattice_meet :>> MeetSemiLattice A;
  lattice_distr X Y Z : (X  Y)  (X  Z)  X  (Y  Z)
}.

(** ** Axiomatization of collections *)
(** The class [SimpleCollection A C] axiomatizes a collection of type [C] with
elements of type [A]. *)
Instance: Params (@map) 3.
Class SimpleCollection A C `{ElemOf A C,
    Empty C, Singleton A C, Union C} : Prop := {
  not_elem_of_empty (x : A) : x  ;
  elem_of_singleton (x y : A) : x  {[ y ]}  x = y;
  elem_of_union X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class Collection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C} : Prop := {
  collection_simple :>> SimpleCollection A C;
  elem_of_intersection X Y (x : A) : x  X  Y  x  X  x  Y;
  elem_of_difference X Y (x : A) : x  X  Y  x  X  x  Y
}.
Class CollectionOps A C `{ElemOf A C, Empty C, Singleton A C, Union C,
    Intersection C, Difference C, IntersectionWith A C, Filter A C} : Prop := {
  collection_ops :>> Collection A C;
  elem_of_intersection_with (f : A  A  option A) X Y (x : A) :
    x  intersection_with f X Y   x1 x2, x1  X  x2  Y  f x1 x2 = Some x;
  elem_of_filter X P `{ x, Decision (P x)} x : x  filter P X  P x  x  X
}.

(** We axiomative a finite collection as a collection whose elements can be
enumerated as a list. These elements, given by the [elements] function, may be
in any order and should not contain duplicates. *)
Class Elements A C := elements: C  list A.
Instance: Params (@elements) 3.

(** We redefine the standard library's [In] and [NoDup] using type classes. *)
Inductive elem_of_list {A} : ElemOf A (list A) :=
  | elem_of_list_here (x : A) l : x  x :: l
  | elem_of_list_further (x y : A) l : x  l  x  y :: l.
Existing Instance elem_of_list.

Inductive NoDup {A} : list A  Prop :=
  | NoDup_nil_2 : NoDup []
  | NoDup_cons_2 x l : x  l  NoDup l  NoDup (x :: l).

(** Decidability of equality of the carrier set is admissible, but we add it
anyway so as to avoid cycles in type class search. *)
Class FinCollection A C `{ElemOf A C, Empty C, Singleton A C,
    Union C, Intersection C, Difference C,
    Elements A C,  x y : A, Decision (x = y)} : Prop := {
  fin_collection :>> Collection A C;
  elem_of_elements X x : x  elements X  x  X;
  NoDup_elements X : NoDup (elements X)
}.
Class Size C := size: C  nat.
Arguments size {_ _} !_ / : simpl nomatch.
Instance: Params (@size) 2.

(** The class [Collection M] axiomatizes a type constructor [M] that can be
used to construct a collection [M A] with elements of type [A]. The advantage
of this class, compared to [Collection], is that it also axiomatizes the
the monadic operations. The disadvantage, is that not many inhabits are
possible (we will only provide an inhabitant using unordered lists without
duplicates removed). More interesting implementations typically need
decidability of equality, or a total order on the elements, which do not fit
in a type constructor of type [Type → Type]. *)
Class CollectionMonad M `{ A, ElemOf A (M A),
     A, Empty (M A),  A, Singleton A (M A),  A, Union (M A),
    !MBind M, !MRet M, !FMap M, !MJoin M} : Prop := {
  collection_monad_simple A :> SimpleCollection A (M A);
  elem_of_bind {A B} (f : A  M B) (X : M A) (x : B) :
    x  X = f   y, x  f y  y  X;
  elem_of_ret {A} (x y : A) : x  mret y  x = y;
  elem_of_fmap {A B} (f : A  B) (X : M A) (x : B) :
    x  f <$> X   y, x = f y  y  X;
  elem_of_join {A} (X : M (M A)) (x : A) : x  mjoin X   Y, x  Y  Y  X
}.

(** The function [fresh X] yields an element that is not contained in [X]. We
will later prove that [fresh] is [Proper] with respect to the induced setoid
equality on collections. *)
Class Fresh A C := fresh: C  A.
Instance: Params (@fresh) 3.
Class FreshSpec A C `{ElemOf A C,
    Empty C, Singleton A C, Union C, Fresh A C} : Prop := {
  fresh_collection_simple :>> SimpleCollection A C;
  fresh_proper_alt X Y : ( x, x  X  x  Y)  fresh X = fresh Y;
  is_fresh (X : C) : fresh X  X
}.

(** * Booleans *)
(** The following coercion allows us to use Booleans as propositions. *)
Coercion Is_true : bool >-> Sortclass.
Hint Unfold Is_true.
Hint Immediate Is_true_eq_left.
Hint Resolve orb_prop_intro andb_prop_intro.
Notation "(&&)" := andb (only parsing).
Notation "(||)" := orb (only parsing).
Infix "&&*" := (zip_with (&&)) (at level 40).
Infix "||*" := (zip_with (||)) (at level 50).

Definition bool_le (β1 β2 : bool) : Prop := negb β1 || β2.
Infix "=.>" := bool_le (at level 70).
Infix "=.>*" := (Forall2 bool_le) (at level 70).
Instance: PartialOrder bool_le.
Proof. repeat split; repeat intros [|]; compute; tauto. Qed.

730
731
732
733
734
735
736
737
738
Lemma andb_True b1 b2 : b1 && b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma orb_True b1 b2 : b1 || b2  b1  b2.
Proof. destruct b1, b2; simpl; tauto. Qed.
Lemma negb_True b : negb b  ¬b.
Proof. destruct b; simpl; tauto. Qed.
Lemma Is_true_false (b : bool) : b = false  ¬b.
Proof. now intros -> ?. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
(** * Miscellaneous *)
Class Half A := half: A  A.
Notation "½" := half : C_scope.
Notation "½*" := (fmap (M:=list) half) : C_scope.

Lemma proj1_sig_inj {A} (P : A  Prop) x (Px : P x) y (Py : P y) :
  xPx = yPy  x = y.
Proof. injection 1; trivial. Qed.
Lemma not_symmetry `{R : relation A, !Symmetric R} x y : ¬R x y  ¬R y x.
Proof. intuition. Qed.
Lemma symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y  R y x.
Proof. intuition. Qed.

(** ** Unit *)
Instance unit_equiv : Equiv unit := λ _ _, True.
Instance unit_equivalence : Equivalence (@equiv unit _).
Proof. repeat split. Qed.

(** ** Products *)
758
759
Instance prod_map_inj {A A' B B'} (f : A  A') (g : B  B') :
  Inj (=) (=) f  Inj (=) (=) g  Inj (=) (=) (prod_map f g).
Robbert Krebbers's avatar
Robbert Krebbers committed
760
761
Proof.
  intros ?? [??] [??] ?; simpl in *; f_equal;
762
    [apply (inj f)|apply (inj g)]; congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
Qed.

Definition prod_relation {A B} (R1 : relation A) (R2 : relation B) :
  relation (A * B) := λ x y, R1 (x.1) (y.1)  R2 (x.2) (y.2).
Section prod_relation.
  Context `{R1 : relation A, R2 : relation B}.
  Global Instance:
    Reflexive R1  Reflexive R2  Reflexive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance:
    Symmetric R1  Symmetric R2  Symmetric (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance:
    Transitive R1  Transitive R2  Transitive (prod_relation R1 R2).
  Proof. firstorder eauto. Qed.
  Global Instance:
    Equivalence R1  Equivalence R2  Equivalence (prod_relation R1 R2).
  Proof. split; apply _. Qed.
  Global Instance: Proper (R1 ==> R2 ==> prod_relation R1 R2) pair.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R1) fst.
  Proof. firstorder eauto. Qed.
  Global Instance: Proper (prod_relation R1 R2 ==> R2) snd.
  Proof. firstorder eauto. Qed.
End prod_relation.

Instance prod_equiv `{Equiv A,Equiv B} : Equiv (A * B) := prod_relation () ().
Instance pair_proper `{Equiv A, Equiv B} :
  Proper (() ==> () ==> ()) (@pair A B) | 0 := _.
Instance fst_proper `{Equiv A, Equiv B} :
  Proper (() ==> ()) (@fst A B) | 0 := _.
Instance snd_proper `{Equiv A, Equiv B} :
  Proper (() ==> ()) (@snd A B) | 0 := _.
Typeclasses Opaque prod_equiv.

(** ** Other *)
Lemma or_l P Q : ¬Q  P  Q  P.
Proof. tauto. Qed.
Lemma or_r P Q : ¬P  P  Q  Q.
Proof. tauto. Qed.
Lemma and_wlog_l (P Q : Prop) : (Q  P)  Q  (P  Q).
Proof. tauto. Qed.
Lemma and_wlog_r (P Q : Prop) : P  (P  Q)  (P  Q).
Proof. tauto. Qed.
807
Instance:  A B (x : B), Comm (=) (λ _ _ : A, x).
Robbert Krebbers's avatar
Robbert Krebbers committed
808
Proof. red. trivial. Qed.
809
Instance:  A (x : A), Assoc (=) (λ _ _ : A, x).
Robbert Krebbers's avatar
Robbert Krebbers committed
810
Proof. red. trivial. Qed.
811
Instance:  A, Assoc (=) (λ x _ : A, x).
Robbert Krebbers's avatar
Robbert Krebbers committed
812
Proof. red. trivial. Qed.
813
Instance:  A, Assoc (=) (λ _ x : A, x).
Robbert Krebbers's avatar
Robbert Krebbers committed
814
Proof. red. trivial. Qed.
815
Instance:  A, IdemP (=) (λ x _ : A, x).
Robbert Krebbers's avatar
Robbert Krebbers committed
816
Proof. red. trivial. Qed.
817
Instance:  A, IdemP (=) (λ _ x : A, x).
Robbert Krebbers's avatar
Robbert Krebbers committed
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
Proof. red. trivial. Qed.

Instance left_id_propholds {A} (R : relation A) i f :
  LeftId R i f   x, PropHolds (R (f i x) x).
Proof. red. trivial. Qed.
Instance right_id_propholds {A} (R : relation A) i f :
  RightId R i f   x, PropHolds (R (f x i) x).
Proof. red. trivial. Qed.
Instance left_absorb_propholds {A} (R : relation A) i f :
  LeftAbsorb R i f   x, PropHolds (R (f i x) i).
Proof. red. trivial. Qed.
Instance right_absorb_propholds {A} (R : relation A) i f :
  RightAbsorb R i f   x, PropHolds (R (f x i) i).
Proof. red. trivial. Qed.
Instance idem_propholds {A} (R : relation A) f :
833
  IdemP R f   x, PropHolds (R (f x x) x).
Robbert Krebbers's avatar
Robbert Krebbers committed
834
835
836
837
838
839
840
Proof. red. trivial. Qed.

Instance:  `{R1 : relation A, R2 : relation B} (x : B),
  Reflexive R2  Proper (R1 ==> R2) (λ _, x).
Proof. intros A R1 B R2 x ? y1 y2; reflexivity. Qed.
Instance: @PreOrder A (=).
Proof. split; repeat intro; congruence. Qed.
841
842
Lemma inj_iff {A B} {R : relation A} {S : relation B} (f : A  B)
  `{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y)  R x y.
Robbert Krebbers's avatar
Robbert Krebbers committed
843
Proof. firstorder. Qed.
844
Instance: Inj (=) (=) (@inl A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
845
Proof. injection 1; auto. Qed.
846
Instance: Inj (=) (=) (@inr A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
847
Proof. injection 1; auto. Qed.
848
Instance: Inj2 (=) (=) (=) (@pair A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
849
Proof. injection 1; auto. Qed.
850
851
852
853
Instance:  `{Inj2 A B C R1 R2 R3 f} y, Inj R1 R3 (λ x, f x y).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Instance:  `{Inj2 A B C R1 R2 R3 f} x, Inj R2 R3 (f x).
Proof. repeat intro; edestruct (inj2 f); eauto. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
854

855
856
Lemma cancel_inj `{Cancel A B R1 f g}
  `{!Equivalence R1} `{!Proper (R2 ==> R1) f} : Inj R1 R2 g.
Robbert Krebbers's avatar
Robbert Krebbers committed
857
858
859
Proof.
  intros x y E. rewrite <-(cancel f g x), <-(cancel f g y), E. reflexivity.
Qed.
860
Lemma cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
Robbert Krebbers's avatar
Robbert Krebbers committed
861
862
863
864
Proof. intros y. exists (g y). auto. Qed.

Lemma impl_transitive (P Q R : Prop) : (P  Q)  (Q  R)  (P  R).
Proof. tauto. Qed.
865
Instance: Comm () (@eq A).
Robbert Krebbers's avatar
Robbert Krebbers committed
866
Proof. red; intuition. Qed.
867
Instance: Comm () (λ x y, @eq A y x).
Robbert Krebbers's avatar
Robbert Krebbers committed
868
Proof. red; intuition. Qed.
869
Instance: Comm () ().
Robbert Krebbers's avatar
Robbert Krebbers committed
870
Proof. red; intuition. Qed.
871
Instance: Comm () ().
Robbert Krebbers's avatar
Robbert Krebbers committed
872
Proof. red; intuition. Qed.
873
Instance: Assoc () ().
Robbert Krebbers's avatar
Robbert Krebbers committed
874
Proof. red; intuition. Qed.
875
Instance: IdemP () ().
Robbert Krebbers's avatar
Robbert Krebbers committed
876
Proof. red; intuition. Qed.
877
Instance: Comm () ().
Robbert Krebbers's avatar
Robbert Krebbers committed
878
Proof. red; intuition. Qed.
879
Instance: Assoc () ().
Robbert Krebbers's avatar
Robbert Krebbers committed
880
Proof. red; intuition. Qed.
881
Instance: IdemP () ().
Robbert Krebbers's avatar
Robbert Krebbers committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
Proof. red; intuition. Qed.
Instance: LeftId () True ().
Proof. red; intuition. Qed.
Instance: RightId () True ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () False ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () False ().
Proof. red; intuition. Qed.
Instance: LeftId () False ().
Proof. red; intuition. Qed.
Instance: RightId () False ().
Proof. red; intuition. Qed.
Instance: LeftAbsorb () True ().
Proof. red; intuition. Qed.
Instance: RightAbsorb () True ().
Proof. red; intuition. Qed.
Instance: LeftId () True impl.
Proof. unfold impl. red; intuition. Qed.
Instance: RightAbsorb () True impl.
Proof. unfold impl. red; intuition. Qed.
903
Lemma not_inj `{Inj A B R R' f} x y : ¬R x y  ¬R' (f x) (f y).
Robbert Krebbers's avatar
Robbert Krebbers committed
904
Proof. intuition. Qed.
905
906
907
908
909
910
Lemma not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R x1 x2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
Lemma not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
  ¬R' y1 y2  ¬R'' (f x1 y1) (f x2 y2).
Proof. intros HR' HR''. destruct (inj2 f x1 y1 x2 y2); auto. Qed.
911
912
Instance inj_compose {A B C} R1 R2 R3 (f : A  B) (g : B  C) :
  Inj R1 R2 f  Inj R2 R3 g  Inj R1 R3 (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
913
Proof. red; intuition. Qed.
914
915
Instance surj_compose {A B C} R (f : A  B) (g : B  C) :
  Surj (=) f  Surj R g  Surj R (g  f).
Robbert Krebbers's avatar
Robbert Krebbers committed
916
Proof.
917
918
  intros ?? x. unfold compose. destruct (surj g x) as [y ?].
  destruct (surj f y) as [z ?]. exists z. congruence.
Robbert Krebbers's avatar
Robbert Krebbers committed
919
920
921
922
923
Qed.

Section sig_map.
  Context `{P : A  Prop} `{Q : B  Prop} (f : A  B) (Hf :  x, P x  Q (f x)).
  Definition sig_map (x : sig P) : sig Q := f (`x)  Hf _ (proj2_sig x).
924
925
  Global Instance sig_map_inj:
    ( x, ProofIrrel (P x))  Inj (=) (=) f  Inj (=) (=) sig_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
926
927
  Proof.
    intros ?? [x Hx] [y Hy]. injection 1. intros Hxy.
928
    apply (inj f) in Hxy; subst. rewrite (proof_irrel _ Hy). auto.
Robbert Krebbers's avatar
Robbert Krebbers committed
929
930
931
  Qed.
End sig_map.
Arguments sig_map _ _ _ _ _ _ !_ /.