language.v 8.9 KB
Newer Older
1
From iris.algebra Require Export ofe.
2
Set Default Proof Using "Type".
Ralf Jung's avatar
Ralf Jung committed
3

4
Section language_mixin.
5
  Context {expr val state observation : Type}.
6
7
  Context (of_val : val  expr).
  Context (to_val : expr  option val).
Ralf Jung's avatar
Ralf Jung committed
8
9
10
  (** We annotate the reduction relation with observations [κ], which we will
     use in the definition of weakest preconditions to predict future
     observations and assert correctness of the predictions. *)
11
  Context (prim_step : expr  state  option observation  expr  state  list expr  Prop).
12
13
14
15

  Record LanguageMixin := {
    mixin_to_of_val v : to_val (of_val v) = Some v;
    mixin_of_to_val e v : to_val e = Some v  of_val v = e;
16
    mixin_val_stuck e σ κ e' σ' efs : prim_step e σ κ e' σ' efs  to_val e = None
17
18
19
  }.
End language_mixin.

20
21
22
23
Structure language := Language {
  expr : Type;
  val : Type;
  state : Type;
24
  observation : Type;
25
26
  of_val : val  expr;
  to_val : expr  option val;
27
  prim_step : expr  state  option observation  expr  state  list expr  Prop;
28
  language_mixin : LanguageMixin of_val to_val prim_step
Ralf Jung's avatar
Ralf Jung committed
29
}.
Janno's avatar
Janno committed
30
31
32
Delimit Scope expr_scope with E.
Delimit Scope val_scope with V.
Bind Scope expr_scope with expr.
33
Bind Scope val_scope with val.
34

35
Arguments Language {_ _ _ _ _ _ _} _.
36
37
Arguments of_val {_} _.
Arguments to_val {_} _.
38
Arguments prim_step {_} _ _ _ _ _ _.
39

40
41
42
Canonical Structure stateC Λ := leibnizC (state Λ).
Canonical Structure valC Λ := leibnizC (val Λ).
Canonical Structure exprC Λ := leibnizC (expr Λ).
43
44

Definition cfg (Λ : language) := (list (expr Λ) * state Λ)%type.
Ralf Jung's avatar
Ralf Jung committed
45

46
Class LanguageCtx {Λ : language} (K : expr Λ  expr Λ) := {
47
48
  fill_not_val e :
    to_val e = None  to_val (K e) = None;
49
50
51
52
53
54
  fill_step e1 σ1 κ e2 σ2 efs :
    prim_step e1 σ1 κ e2 σ2 efs 
    prim_step (K e1) σ1 κ (K e2) σ2 efs;
  fill_step_inv e1' σ1 κ e2 σ2 efs :
    to_val e1' = None  prim_step (K e1') σ1 κ e2 σ2 efs 
     e2', e2 = K e2'  prim_step e1' σ1 κ e2' σ2 efs
55
56
}.

57
Instance language_ctx_id Λ : LanguageCtx (@id (expr Λ)).
Robbert Krebbers's avatar
Robbert Krebbers committed
58
59
Proof. constructor; naive_solver. Qed.

Ralf Jung's avatar
Ralf Jung committed
60
Inductive atomicity := StronglyAtomic | WeaklyAtomic.
61

62
Section language.
63
64
  Context {Λ : language}.
  Implicit Types v : val Λ.
65
66
67
68
69
70
  Implicit Types e : expr Λ.

  Lemma to_of_val v : to_val (of_val v) = Some v.
  Proof. apply language_mixin. Qed.
  Lemma of_to_val e v : to_val e = Some v  of_val v = e.
  Proof. apply language_mixin. Qed.
71
  Lemma val_stuck e σ κ e' σ' efs : prim_step e σ κ e' σ' efs  to_val e = None.
72
  Proof. apply language_mixin. Qed.
Ralf Jung's avatar
Ralf Jung committed
73

74
  Definition reducible (e : expr Λ) (σ : state Λ) :=
75
     κ e' σ' efs, prim_step e σ κ e' σ' efs.
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
76
77
78
  (* Total WP only permits reductions without observations *)
  Definition reducible_no_obs (e : expr Λ) (σ : state Λ) :=
     e' σ' efs, prim_step e σ None e' σ' efs.
79
  Definition irreducible (e : expr Λ) (σ : state Λ) :=
80
     κ e' σ' efs, ¬prim_step e σ κ e' σ' efs.
81
82
  Definition stuck (e : expr Λ) (σ : state Λ) :=
    to_val e = None  irreducible e σ.
83

Ralf Jung's avatar
Ralf Jung committed
84
  (* [Atomic WeaklyAtomic]: This (weak) form of atomicity is enough to open
Ralf Jung's avatar
Ralf Jung committed
85
86
87
88
     invariants when WP ensures safety, i.e., programs never can get stuck.  We
     have an example in lambdaRust of an expression that is atomic in this
     sense, but not in the stronger sense defined below, and we have to be able
     to open invariants around that expression.  See `CasStuckS` in
89
     [lambdaRust](https://gitlab.mpi-sws.org/FP/LambdaRust-coq/blob/master/theories/lang/lang.v).
90

Ralf Jung's avatar
Ralf Jung committed
91
     [Atomic StronglyAtomic]: To open invariants with a WP that does not ensure
Ralf Jung's avatar
Ralf Jung committed
92
93
94
95
     safety, we need a stronger form of atomicity.  With the above definition,
     in case `e` reduces to a stuck non-value, there is no proof that the
     invariants have been established again. *)
  Class Atomic (a : atomicity) (e : expr Λ) : Prop :=
96
97
    atomic σ e' κ σ' efs :
      prim_step e σ κ e' σ' efs 
Ralf Jung's avatar
Ralf Jung committed
98
      if a is WeaklyAtomic then irreducible e' σ' else is_Some (to_val e').
99

100
  Inductive step (ρ1 : cfg Λ) (κ : option (observation Λ)) (ρ2 : cfg Λ) : Prop :=
101
    | step_atomic e1 σ1 e2 σ2 efs t1 t2 :
102
       ρ1 = (t1 ++ e1 :: t2, σ1) 
103
       ρ2 = (t1 ++ e2 :: t2 ++ efs, σ2) 
104
105
106
       prim_step e1 σ1 κ e2 σ2 efs 
       step ρ1 κ ρ2.

107
108
109
110
111
  (* TODO (MR) introduce notation ::? for cons_obs and suggest for inclusion to stdpp? *)
  Definition cons_obs {A} (x : option A) (xs : list A) :=
    option_list x ++ xs.

  Inductive nsteps : nat  cfg Λ  list (observation Λ)  cfg Λ  Prop :=
112
113
114
115
116
  | nsteps_refl ρ :
      nsteps 0 ρ [] ρ
  | nsteps_l n ρ1 ρ2 ρ3 κ κs :
      step ρ1 κ ρ2 
      nsteps n ρ2 κs ρ3 
117
      nsteps (S n) ρ1 (cons_obs κ κs) ρ3.
118
119
120
121
122
123

  Definition erased_step (ρ1 ρ2 : cfg Λ) := exists κ, step ρ1 κ ρ2.

  Hint Constructors step nsteps.

  Lemma erased_steps_nsteps ρ1 ρ2 :
124
    rtc erased_step ρ1 ρ2 
125
126
127
128
     n κs, nsteps n ρ1 κs ρ2.
  Proof.
    induction 1; firstorder; eauto.
  Qed.
129

Robbert Krebbers's avatar
Robbert Krebbers committed
130
131
  Lemma of_to_val_flip v e : of_val v = e  to_val e = Some v.
  Proof. intros <-. by rewrite to_of_val. Qed.
132
133
134

  Lemma not_reducible e σ : ¬reducible e σ  irreducible e σ.
  Proof. unfold reducible, irreducible. naive_solver. Qed.
135
  Lemma reducible_not_val e σ : reducible e σ  to_val e = None.
136
  Proof. intros (?&?&?&?&?); eauto using val_stuck. Qed.
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
137
138
  Lemma reducible_no_obs_reducible e σ : reducible_no_obs e σ  reducible e σ.
  Proof. intros (?&?&?&?); eexists; eauto. Qed.
139
  Lemma val_irreducible e σ : is_Some (to_val e)  irreducible e σ.
140
  Proof. intros [??] ???? ?%val_stuck. by destruct (to_val e). Qed.
141
  Global Instance of_val_inj : Inj (=) (=) (@of_val Λ).
142
  Proof. by intros v v' Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
Ralf Jung's avatar
Ralf Jung committed
143

144
145
146
  Lemma strongly_atomic_atomic e a :
    Atomic StronglyAtomic e  Atomic a e.
  Proof. unfold Atomic. destruct a; eauto using val_irreducible. Qed.
147

148
149
150
  Lemma reducible_fill `{LanguageCtx Λ K} e σ :
    to_val e = None  reducible (K e) σ  reducible e σ.
  Proof.
151
    intros ? (e'&σ'&k&efs&Hstep); unfold reducible.
152
153
    apply fill_step_inv in Hstep as (e2' & _ & Hstep); eauto.
  Qed.
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
154
155
156
157
158
159
  Lemma reducible_no_obs_fill `{LanguageCtx Λ K} e σ :
    to_val e = None  reducible_no_obs (K e) σ  reducible_no_obs e σ.
  Proof.
    intros ? (e'&σ'&efs&Hstep); unfold reducible_no_obs.
    apply fill_step_inv in Hstep as (e2' & _ & Hstep); eauto.
  Qed.
160
161
162
  Lemma irreducible_fill `{LanguageCtx Λ K} e σ :
    to_val e = None  irreducible e σ  irreducible (K e) σ.
  Proof. rewrite -!not_reducible. naive_solver eauto using reducible_fill. Qed.
163

164
165
  Lemma step_Permutation (t1 t1' t2 : list (expr Λ)) κ σ1 σ2 :
    t1  t1'  step (t1,σ1) κ (t2,σ2)   t2', t2  t2'  step (t1',σ1) κ (t2',σ2).
166
167
168
169
170
171
172
  Proof.
    intros Ht [e1 σ1' e2 σ2' efs tl tr ?? Hstep]; simplify_eq/=.
    move: Ht; rewrite -Permutation_middle (symmetry_iff ()).
    intros (tl'&tr'&->&Ht)%Permutation_cons_inv.
    exists (tl' ++ e2 :: tr' ++ efs); split; [|by econstructor].
    by rewrite -!Permutation_middle !assoc_L Ht.
  Qed.
Dan Frumin's avatar
Dan Frumin committed
173

174
175
176
177
178
179
  Lemma erased_step_Permutation (t1 t1' t2 : list (expr Λ)) σ1 σ2 :
    t1  t1'  erased_step (t1,σ1) (t2,σ2)   t2', t2  t2'  erased_step (t1',σ1) (t2',σ2).
  Proof.
    intros* Heq [? Hs]. pose proof (step_Permutation _ _ _ _ _ _ Heq Hs). firstorder.
  Qed.

Dan Frumin's avatar
Dan Frumin committed
180
181
  Class PureExec (P : Prop) (e1 e2 : expr Λ) := {
    pure_exec_safe σ :
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
182
      P  reducible_no_obs e1 σ;
183
    pure_exec_puredet σ1 κ e2' σ2 efs :
184
      P  prim_step e1 σ1 κ e2' σ2 efs  κ = None  σ1 = σ2  e2 = e2'  efs = [];
Dan Frumin's avatar
Dan Frumin committed
185
186
  }.

187
  Lemma hoist_pred_pure_exec (P : Prop) (e1 e2 : expr Λ) :
Dan Frumin's avatar
Dan Frumin committed
188
189
190
    (P  PureExec True e1 e2) 
    PureExec P e1 e2.
  Proof. intros HPE. split; intros; eapply HPE; eauto. Qed.
191

192
193
  (* We do not make this an instance because it is awfully general. *)
  Lemma pure_exec_ctx K `{LanguageCtx Λ K} e1 e2 φ :
194
195
196
197
    PureExec φ e1 e2 
    PureExec φ (K e1) (K e2).
  Proof.
    intros [Hred Hstep]. split.
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
198
    - unfold reducible_no_obs in *. naive_solver eauto using fill_step.
199
200
    - intros σ1 κ e2' σ2 efs ? Hpstep.
      destruct (fill_step_inv e1 σ1 κ e2' σ2 efs) as (e2'' & -> & ?); [|exact Hpstep|].
Ralf Jung's avatar
fix TWP    
Ralf Jung committed
201
      + destruct (Hred σ1) as (? & ? & ? & ?); eauto using val_stuck.
202
      + edestruct (Hstep σ1 κ e2'' σ2 efs) as (? & -> & -> & ->); auto.
203
204
  Qed.

205
206
  (* This is a family of frequent assumptions for PureExec *)
  Class IntoVal (e : expr Λ) (v : val Λ) :=
207
    into_val : of_val v = e.
Robbert Krebbers's avatar
Robbert Krebbers committed
208

209
  Class AsVal (e : expr Λ) := as_val :  v, of_val v = e.
Robbert Krebbers's avatar
Robbert Krebbers committed
210
211
212
213
214
  (* There is no instance [IntoVal → AsVal] as often one can solve [AsVal] more
  efficiently since no witness has to be computed. *)
  Global Instance as_vals_of_val vs : TCForall AsVal (of_val <$> vs).
  Proof.
    apply TCForall_Forall, Forall_fmap, Forall_true=> v.
215
    rewrite /AsVal /=; eauto.
Robbert Krebbers's avatar
Robbert Krebbers committed
216
  Qed.
Ralf Jung's avatar
Ralf Jung committed
217
218
219
  Lemma as_val_is_Some e :
    ( v, of_val v = e)  is_Some (to_val e).
  Proof. intros [v <-]. rewrite to_of_val. eauto. Qed.
220
End language.