lifting.v 9.99 KB
Newer Older
1
2
From iris.base_logic Require Export gen_heap.
From iris.program_logic Require Export weakestpre.
3
From iris.program_logic Require Import ectx_lifting.
4
From iris.heap_lang Require Export lang.
5
From iris.heap_lang Require Import tactics.
6
From iris.proofmode Require Import tactics.
7
From iris.prelude Require Import fin_maps.
8
Import uPred.
9

Ralf Jung's avatar
Ralf Jung committed
10
11
(** Basic rules for language operations. *)

12
13
14
15
16
17
18
19
20
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
  heapG_gen_heapG :> gen_heapG loc val Σ
}.

Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := {
  iris_invG := heapG_invG;
  state_interp := gen_heap_ctx
}.
21
Global Opaque iris_invG.
22
23
24
25
26
27
28
29
30
31

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
  (at level 20, q at level 50, format "l  ↦{ q }  v") : uPred_scope.
Notation "l ↦ v" :=
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : uPred_scope.
Notation "l ↦{ q } -" := ( v, l {q} v)%I
  (at level 20, q at level 50, format "l  ↦{ q }  -") : uPred_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : uPred_scope.

32
33
34
35
36
37
38
39
40
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
41
42
  | H : _ = of_val ?v |- _ =>
     is_var v; destruct v; first[discriminate H|injection H as H]
43
44
45
46
47
48
49
50
51
52
53
54
  | H : head_step ?e _ _ _ _ |- _ =>
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

Local Hint Extern 0 (atomic _) => solve_atomic.
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _; simpl.

Local Hint Constructors head_step.
Local Hint Resolve alloc_fresh.
Local Hint Resolve to_of_val.
55

Ralf Jung's avatar
Ralf Jung committed
56
Section lifting.
57
Context `{heapG Σ}.
58
59
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
60
Implicit Types efs : list expr.
61
Implicit Types σ : state.
Ralf Jung's avatar
Ralf Jung committed
62

63
(** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *)
64
Lemma wp_bind {E e} K Φ :
65
  WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }}  WP fill K e @ E {{ Φ }}.
66
Proof. exact: wp_ectx_bind. Qed.
Ralf Jung's avatar
Ralf Jung committed
67

68
Lemma wp_bindi {E e} Ki Φ :
Ralf Jung's avatar
Ralf Jung committed
69
70
71
72
  WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} 
     WP fill_item Ki e @ E {{ Φ }}.
Proof. exact: weakestpre.wp_bind. Qed.

73
(** Base axioms for core primitives of the language: Stateless reductions *)
74
Lemma wp_fork E e Φ :
75
   Φ (LitV LitUnit)   WP e {{ _, True }}  WP Fork e @ E {{ Φ }}.
76
Proof.
77
  rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) [e]) //=; eauto.
78
  - by rewrite later_sep -(wp_value _ _ (Lit _)) // big_sepL_singleton.
79
  - intros; inv_head_step; eauto.
80
Qed.
81

82
Lemma wp_rec E f x erec e1 e2 Φ :
83
  e1 = Rec f x erec 
84
  is_Some (to_val e2) 
85
  Closed (f :b: x :b: []) erec 
Robbert Krebbers's avatar
Robbert Krebbers committed
86
   WP subst' x e2 (subst' f e1 erec) @ E {{ Φ }}  WP App e1 e2 @ E {{ Φ }}.
87
Proof.
88
  intros -> [v2 ?] ?. rewrite -(wp_lift_pure_det_head_step_no_fork (App _ _)
89
    (subst' x e2 (subst' f (Rec f x erec) erec))); eauto.
90
  intros; inv_head_step; eauto.
91
Qed.
92

93
94
95
Lemma wp_un_op E op e v v' Φ :
  to_val e = Some v 
  un_op_eval op v = Some v' 
96
   Φ v'  WP UnOp op e @ E {{ Φ }}.
97
Proof.
98
  intros. rewrite -(wp_lift_pure_det_head_step_no_fork (UnOp op _) (of_val v'))
99
    -?wp_value'; eauto.
100
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
101
Qed.
102

103
104
105
Lemma wp_bin_op E op e1 e2 v1 v2 v' Φ :
  to_val e1 = Some v1  to_val e2 = Some v2 
  bin_op_eval op v1 v2 = Some v' 
106
   (Φ v')  WP BinOp op e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
107
Proof.
108
  intros. rewrite -(wp_lift_pure_det_head_step_no_fork (BinOp op _ _) (of_val v'))
109
    -?wp_value'; eauto.
110
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
111
Qed.
112

113
Lemma wp_if_true E e1 e2 Φ :
114
   WP e1 @ E {{ Φ }}  WP If (Lit (LitBool true)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
115
Proof.
116
  apply wp_lift_pure_det_head_step_no_fork; eauto.
117
  intros; inv_head_step; eauto.
118
119
Qed.

120
Lemma wp_if_false E e1 e2 Φ :
121
   WP e2 @ E {{ Φ }}  WP If (Lit (LitBool false)) e1 e2 @ E {{ Φ }}.
122
Proof.
123
  apply wp_lift_pure_det_head_step_no_fork; eauto.
124
  intros; inv_head_step; eauto.
125
Qed.
126

127
128
Lemma wp_fst E e1 v1 e2 Φ :
  to_val e1 = Some v1  is_Some (to_val e2) 
129
   Φ v1  WP Fst (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
130
Proof.
131
  intros ? [v2 ?].
132
  rewrite -(wp_lift_pure_det_head_step_no_fork (Fst _) e1) -?wp_value; eauto.
133
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
134
Qed.
135

136
137
Lemma wp_snd E e1 e2 v2 Φ :
  is_Some (to_val e1)  to_val e2 = Some v2 
138
   Φ v2  WP Snd (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
139
Proof.
140
  intros [v1 ?] ?.
141
  rewrite -(wp_lift_pure_det_head_step_no_fork (Snd _) e2) -?wp_value; eauto.
142
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
143
Qed.
144

145
146
Lemma wp_case_inl E e0 e1 e2 Φ :
  is_Some (to_val e0) 
147
   WP App e1 e0 @ E {{ Φ }}  WP Case (InjL e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
148
Proof.
149
  intros [v0 ?].
150
  rewrite -(wp_lift_pure_det_head_step_no_fork (Case _ _ _) (App e1 e0)); eauto.
151
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
152
Qed.
153

154
155
Lemma wp_case_inr E e0 e1 e2 Φ :
  is_Some (to_val e0) 
156
   WP App e2 e0 @ E {{ Φ }}  WP Case (InjR e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
157
Proof.
158
  intros [v0 ?].
159
  rewrite -(wp_lift_pure_det_head_step_no_fork (Case _ _ _) (App e2 e0)); eauto.
160
  intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
161
Qed.
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

(** Heap *)
Lemma wp_alloc E e v :
  to_val e = Some v 
  {{{ True }}} Alloc e @ E {{{ l, RET LitV (LitLoc l); l  v }}}.
Proof.
  iIntros (<-%of_to_val Φ) "HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>"; iSplit; first by auto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_load E l q v :
  {{{  l {q} v }}} Load (Lit (LitLoc l)) @ E {{{ RET v; l {q} v }}}.
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_store E l v' e v :
  to_val e = Some v 
  {{{  l  v' }}} Store (Lit (LitLoc l)) e @ E {{{ RET LitV LitUnit; l  v }}}.
Proof.
  iIntros (<-%of_to_val Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
  iModIntro. iSplit=>//. by iApply "HΦ".
Qed.

Lemma wp_cas_fail E l q v' e1 v1 e2 v2 :
  to_val e1 = Some v1  to_val e2 = Some v2  v'  v1 
  {{{  l {q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ E
  {{{ RET LitV (LitBool false); l {q} v' }}}.
Proof.
  iIntros (<-%of_to_val <-%of_to_val ? Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.

Lemma wp_cas_suc E l e1 v1 e2 v2 :
  to_val e1 = Some v1  to_val e2 = Some v2 
  {{{  l  v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ E
  {{{ RET LitV (LitBool true); l  v2 }}}.
Proof.
  iIntros (<-%of_to_val <-%of_to_val Φ) ">Hl HΦ".
  iApply wp_lift_atomic_head_step_no_fork; auto.
  iIntros (σ1) "Hσ !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
  iModIntro. iSplit=>//. by iApply "HΦ".
Qed.
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

(** Proof rules for derived constructs *)
Lemma wp_lam E x elam e1 e2 Φ :
  e1 = Lam x elam 
  is_Some (to_val e2) 
  Closed (x :b: []) elam 
   WP subst' x e2 elam @ E {{ Φ }}  WP App e1 e2 @ E {{ Φ }}.
Proof. intros. by rewrite -(wp_rec _ BAnon) //. Qed.

Lemma wp_let E x e1 e2 Φ :
  is_Some (to_val e1)  Closed (x :b: []) e2 
   WP subst' x e1 e2 @ E {{ Φ }}  WP Let x e1 e2 @ E {{ Φ }}.
Proof. by apply wp_lam. Qed.

Lemma wp_seq E e1 e2 Φ :
  is_Some (to_val e1)  Closed [] e2 
   WP e2 @ E {{ Φ }}  WP Seq e1 e2 @ E {{ Φ }}.
Proof. intros ??. by rewrite -wp_let. Qed.

Lemma wp_skip E Φ :  Φ (LitV LitUnit)  WP Skip @ E {{ Φ }}.
Proof. rewrite -wp_seq; last eauto. by rewrite -wp_value. Qed.

Lemma wp_match_inl E e0 x1 e1 x2 e2 Φ :
  is_Some (to_val e0)  Closed (x1 :b: []) e1 
   WP subst' x1 e0 e1 @ E {{ Φ }}  WP Match (InjL e0) x1 e1 x2 e2 @ E {{ Φ }}.
Proof. intros. by rewrite -wp_case_inl // -[X in _  X]later_intro -wp_let. Qed.

Lemma wp_match_inr E e0 x1 e1 x2 e2 Φ :
  is_Some (to_val e0)  Closed (x2 :b: []) e2 
   WP subst' x2 e0 e2 @ E {{ Φ }}  WP Match (InjR e0) x1 e1 x2 e2 @ E {{ Φ }}.
Proof. intros. by rewrite -wp_case_inr // -[X in _  X]later_intro -wp_let. Qed.

Lemma wp_le E (n1 n2 : Z) P Φ :
  (n1  n2  P   Φ (LitV (LitBool true))) 
  (n2 < n1  P   Φ (LitV (LitBool false))) 
  P  WP BinOp LeOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}.
Proof.
  intros. rewrite -wp_bin_op //; [].
  destruct (bool_decide_reflect (n1  n2)); by eauto with omega.
Qed.

Lemma wp_lt E (n1 n2 : Z) P Φ :
  (n1 < n2  P   Φ (LitV (LitBool true))) 
  (n2  n1  P   Φ (LitV (LitBool false))) 
  P  WP BinOp LtOp (Lit (LitInt n1)) (Lit (LitInt n2)) @ E {{ Φ }}.
Proof.
  intros. rewrite -wp_bin_op //; [].
  destruct (bool_decide_reflect (n1 < n2)); by eauto with omega.
Qed.

Lemma wp_eq E e1 e2 v1 v2 P Φ :
  to_val e1 = Some v1  to_val e2 = Some v2 
  (v1 = v2  P   Φ (LitV (LitBool true))) 
  (v1  v2  P   Φ (LitV (LitBool false))) 
  P  WP BinOp EqOp e1 e2 @ E {{ Φ }}.
Proof.
  intros. rewrite -wp_bin_op //; [].
  destruct (bool_decide_reflect (v1 = v2)); by eauto.
Qed.
Ralf Jung's avatar
Ralf Jung committed
280
End lifting.