lifting.v 12.9 KB
Newer Older
1
From iris.algebra Require Import auth gmap.
2
From iris.base_logic Require Export gen_heap.
3 4
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import ectx_lifting total_ectx_lifting.
5
From iris.heap_lang Require Export lang proph_map.
6
From iris.heap_lang Require Import tactics.
7
From iris.proofmode Require Import tactics.
Ralf Jung's avatar
Ralf Jung committed
8
From stdpp Require Import fin_maps.
9
Set Default Proof Using "Type".
Ralf Jung's avatar
Ralf Jung committed
10

11 12
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
13 14
  heapG_gen_heapG :> gen_heapG loc val Σ;
  heapG_proph_mapG :> proph_mapG proph val Σ
15 16 17 18
}.

Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := {
  iris_invG := heapG_invG;
19
  state_interp σ κs :=
Ralf Jung's avatar
Ralf Jung committed
20
    (gen_heap_ctx σ.(heap)  proph_map_ctx κs σ.(used_proph))%I
21 22 23 24
}.

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  (at level 20, q at level 50, format "l  ↦{ q }  v") : bi_scope.
26
Notation "l ↦ v" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope.
28
Notation "l ↦{ q } -" := ( v, l {q} v)%I
Robbert Krebbers's avatar
Robbert Krebbers committed
29 30
  (at level 20, q at level 50, format "l  ↦{ q }  -") : bi_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : bi_scope.
31

Ralf Jung's avatar
Ralf Jung committed
32
Notation "p ⥱ v" := (proph_mapsto p v) (at level 20, format "p ⥱ v") : bi_scope.
33 34
Notation "p ⥱ -" := ( v, p  v)%I (at level 20) : bi_scope.

35 36 37 38 39 40 41 42 43
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
44
  | H : head_step ?e _ _ _ _ _ |- _ =>
45 46 47 48 49
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

50
Local Hint Extern 0 (atomic _ _) => solve_atomic.
51 52
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl.
Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl.
53

54 55 56 57 58 59
(* [simpl apply] is too stupid, so we need extern hints here. *)
Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasSucS.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasFailS.
Local Hint Extern 0 (head_step (Alloc _) _ _ _ _ _) => apply alloc_fresh.
Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_fresh.
60
Local Hint Resolve to_of_val.
61

Ralf Jung's avatar
fix TWP  
Ralf Jung committed
62
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
63
Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step.
64
Local Ltac solve_pure_exec :=
65 66
  unfold IntoVal in *;
  repeat match goal with H : AsVal _ |- _ => destruct H as [??] end; subst;
67 68
  intros ?; apply nsteps_once, pure_head_step_pure_step;
    constructor; [solve_exec_safe | solve_exec_puredet].
69

70 71
Class AsRec (e : expr) (f x : binder) (erec : expr) :=
  as_rec : e = Rec f x erec.
72 73
Instance AsRec_rec f x e : AsRec (Rec f x e) f x e := eq_refl.
Instance AsRec_rec_locked_val v f x e :
74 75 76
  AsRec (of_val v) f x e  AsRec (of_val (locked v)) f x e.
Proof. by unlock. Qed.

77
Instance pure_rec f x (erec e1 e2 : expr)
Robbert Krebbers's avatar
Robbert Krebbers committed
78
    `{!AsVal e2, AsRec e1 f x erec, Closed (f :b: x :b: []) erec} :
79
  PureExec True 1 (App e1 e2) (subst' x e2 (subst' f e1 erec)).
80
Proof. unfold AsRec in *; solve_pure_exec. Qed.
81

82
Instance pure_unop op e v v' `{!IntoVal e v} :
83
  PureExec (un_op_eval op v = Some v') 1 (UnOp op e) (of_val v').
84
Proof. solve_pure_exec. Qed.
85

86
Instance pure_binop op e1 e2 v1 v2 v' `{!IntoVal e1 v1, !IntoVal e2 v2} :
87
  PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op e1 e2) (of_val v').
88
Proof. solve_pure_exec. Qed.
89

90
Instance pure_if_true e1 e2 : PureExec True 1 (If (Lit (LitBool true)) e1 e2) e1.
91
Proof. solve_pure_exec. Qed.
92

93
Instance pure_if_false e1 e2 : PureExec True 1 (If (Lit (LitBool false)) e1 e2) e2.
94
Proof. solve_pure_exec. Qed.
95

96
Instance pure_fst e1 e2 v1 `{!IntoVal e1 v1, !AsVal e2} :
97
  PureExec True 1 (Fst (Pair e1 e2)) e1.
98
Proof. solve_pure_exec. Qed.
99

100
Instance pure_snd e1 e2 v2 `{!AsVal e1, !IntoVal e2 v2} :
101
  PureExec True 1 (Snd (Pair e1 e2)) e2.
102
Proof. solve_pure_exec. Qed.
103

104
Instance pure_case_inl e0 v e1 e2 `{!IntoVal e0 v} :
105
  PureExec True 1 (Case (InjL e0) e1 e2) (App e1 e0).
106
Proof. solve_pure_exec. Qed.
107

108
Instance pure_case_inr e0 v e1 e2 `{!IntoVal e0 v} :
109
  PureExec True 1 (Case (InjR e0) e1 e2) (App e2 e0).
110
Proof. solve_pure_exec. Qed.
111

112 113 114 115 116 117 118
Section lifting.
Context `{heapG Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
Implicit Types efs : list expr.
Implicit Types σ : state.

Ralf Jung's avatar
Ralf Jung committed
119
(** Fork: Not using Texan triples to avoid some unnecessary [True] *)
120
Lemma wp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
121
   WP e @ s;  {{ _, True }} -  Φ (LitV LitUnit) - WP Fork e @ s; E {{ Φ }}.
122
Proof.
Ralf Jung's avatar
Ralf Jung committed
123
  iIntros "He HΦ".
Ralf Jung's avatar
Ralf Jung committed
124
  iApply wp_lift_pure_det_head_step; [by eauto|intros; inv_head_step; by eauto|].
125 126
  iModIntro; iNext; iIntros "!> /= {$He}". by iApply wp_value.
Qed.
127

128
Lemma twp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
129
  WP e @ s;  [{ _, True }] - Φ (LitV LitUnit) - WP Fork e @ s; E [{ Φ }].
130
Proof.
Ralf Jung's avatar
Ralf Jung committed
131
  iIntros "He HΦ".
132
  iApply twp_lift_pure_det_head_step; [eauto|intros; inv_head_step; eauto|].
133 134 135
  iIntros "!> /= {$He}". by iApply twp_value.
Qed.

136
(** Heap *)
137
Lemma wp_alloc s E e v :
Robbert Krebbers's avatar
Robbert Krebbers committed
138
  IntoVal e v 
139
  {{{ True }}} Alloc e @ s; E {{{ l, RET LitV (LitLoc l); l  v }}}.
140
Proof.
141
  iIntros (<- Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
142 143
  iIntros (σ1 κ κs) "[Hσ Hκs] !>"; iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
144 145 146
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
147 148 149 150
Lemma twp_alloc s E e v :
  IntoVal e v 
  [[{ True }]] Alloc e @ s; E [[{ l, RET LitV (LitLoc l); l  v }]].
Proof.
151
  iIntros (<- Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
152
  iIntros (σ1 κs) "[Hσ Hκs] !>"; iSplit; first by eauto.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
153
  iIntros (κ v2 σ2 efs Hstep); inv_head_step.
154
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
155
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
156
Qed.
157

158 159
Lemma wp_load s E l q v :
  {{{  l {q} v }}} Load (Lit (LitLoc l)) @ s; E {{{ RET v; l {q} v }}}.
160 161
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
162 163
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
164 165
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
166 167 168 169
Lemma twp_load s E l q v :
  [[{ l {q} v }]] Load (Lit (LitLoc l)) @ s; E [[{ RET v; l {q} v }]].
Proof.
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
170
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
171
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
172
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
173
Qed.
174

175
Lemma wp_store s E l v' e v :
Robbert Krebbers's avatar
Robbert Krebbers committed
176
  IntoVal e v 
177
  {{{  l  v' }}} Store (Lit (LitLoc l)) e @ s; E {{{ RET LitV LitUnit; l  v }}}.
178
Proof.
179
  iIntros (<- Φ) ">Hl HΦ".
180
  iApply wp_lift_atomic_head_step_no_fork; auto.
181 182
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
183
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
184
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
185
Qed.
186 187 188 189
Lemma twp_store s E l v' e v :
  IntoVal e v 
  [[{ l  v' }]] Store (Lit (LitLoc l)) e @ s; E [[{ RET LitV LitUnit; l  v }]].
Proof.
190
  iIntros (<- Φ) "Hl HΦ".
191
  iApply twp_lift_atomic_head_step_no_fork; auto.
192
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
193
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
194
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
195
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
196
Qed.
197

198
Lemma wp_cas_fail s E l q v' e1 v1 e2 :
Ralf Jung's avatar
Ralf Jung committed
199
  IntoVal e1 v1  AsVal e2  v'  v1  vals_cas_compare_safe v' v1 
200
  {{{  l {q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ s; E
201 202
  {{{ RET LitV (LitBool false); l {q} v' }}}.
Proof.
Ralf Jung's avatar
Ralf Jung committed
203
  iIntros (<- [v2 <-] ?? Φ) ">Hl HΦ".
204
  iApply wp_lift_atomic_head_step_no_fork; auto.
205 206
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
207 208
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
209
Lemma twp_cas_fail s E l q v' e1 v1 e2 :
Ralf Jung's avatar
Ralf Jung committed
210
  IntoVal e1 v1  AsVal e2  v'  v1  vals_cas_compare_safe v' v1 
211 212 213
  [[{ l {q} v' }]] CAS (Lit (LitLoc l)) e1 e2 @ s; E
  [[{ RET LitV (LitBool false); l {q} v' }]].
Proof.
Ralf Jung's avatar
Ralf Jung committed
214
  iIntros (<- [v2 <-] ?? Φ) "Hl HΦ".
215
  iApply twp_lift_atomic_head_step_no_fork; auto.
216
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
217 218
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
219
Qed.
220

221
Lemma wp_cas_suc s E l e1 v1 e2 v2 :
Ralf Jung's avatar
Ralf Jung committed
222
  IntoVal e1 v1  IntoVal e2 v2  vals_cas_compare_safe v1 v1 
223
  {{{  l  v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ s; E
224 225
  {{{ RET LitV (LitBool true); l  v2 }}}.
Proof.
Ralf Jung's avatar
Ralf Jung committed
226
  iIntros (<- <- ? Φ) ">Hl HΦ".
227
  iApply wp_lift_atomic_head_step_no_fork; auto.
228 229
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
230
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
231
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
232
Qed.
233
Lemma twp_cas_suc s E l e1 v1 e2 v2 :
Ralf Jung's avatar
Ralf Jung committed
234
  IntoVal e1 v1  IntoVal e2 v2  vals_cas_compare_safe v1 v1 
235 236 237
  [[{ l  v1 }]] CAS (Lit (LitLoc l)) e1 e2 @ s; E
  [[{ RET LitV (LitBool true); l  v2 }]].
Proof.
Ralf Jung's avatar
Ralf Jung committed
238
  iIntros (<- <- ? Φ) "Hl HΦ".
239
  iApply twp_lift_atomic_head_step_no_fork; auto.
240
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
241
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
242
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
243
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
244
Qed.
245

Ralf Jung's avatar
Ralf Jung committed
246
Lemma wp_faa s E l i1 e2 i2 :
247
  IntoVal e2 (LitV (LitInt i2)) 
Ralf Jung's avatar
Ralf Jung committed
248
  {{{  l  LitV (LitInt i1) }}} FAA (Lit (LitLoc l)) e2 @ s; E
249 250
  {{{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }}}.
Proof.
251
  iIntros (<- Φ) ">Hl HΦ".
252
  iApply wp_lift_atomic_head_step_no_fork; auto.
253 254
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
255
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
256
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
257
Qed.
258 259 260 261 262
Lemma twp_faa s E l i1 e2 i2 :
  IntoVal e2 (LitV (LitInt i2)) 
  [[{ l  LitV (LitInt i1) }]] FAA (Lit (LitLoc l)) e2 @ s; E
  [[{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }]].
Proof.
263
  iIntros (<- Φ) "Hl HΦ".
264
  iApply twp_lift_atomic_head_step_no_fork; auto.
265
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
266
  iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step.
267
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
268
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
269
Qed.
270 271 272

(** Lifting lemmas for creating and resolving prophecy variables *)
Lemma wp_new_proph :
Ralf Jung's avatar
Ralf Jung committed
273
  {{{ True }}} NewProph {{{ v (p : proph), RET (LitV (LitProphecy p)); p  v }}}.
274 275
Proof.
  iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
276 277 278 279
  iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR".
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep). inv_head_step.
  iMod (@proph_map_alloc with "HR") as "[HR Hp]".
280 281 282 283 284 285
  { intro Hin. apply (iffLR (elem_of_subseteq _ _) Hdom) in Hin. done. }
  iModIntro; iSplit=> //. iFrame. iSplitL "HR".
  - iExists _. iSplit; last done.
    iPureIntro. split.
    + apply first_resolve_insert; auto.
    + rewrite dom_insert_L. by apply union_mono_l.
Ralf Jung's avatar
Ralf Jung committed
286
  - iApply "HΦ". done.
287 288 289 290 291 292 293 294
Qed.

Lemma wp_resolve_proph e1 e2 p v w:
  IntoVal e1 (LitV (LitProphecy p)) 
  IntoVal e2 w 
  {{{ p  v }}} ResolveProph e1 e2 {{{ RET (LitV LitUnit); v = Some w }}}.
Proof.
  iIntros (<- <- Φ) "Hp HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
295 296 297 298
  iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR".
  iDestruct (@proph_map_valid with "HR Hp") as %Hlookup.
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iApply fupd_frame_l.
299
  iSplit=> //. iFrame.
Ralf Jung's avatar
Ralf Jung committed
300
  iMod (@proph_map_remove with "HR Hp") as "Hp". iModIntro.
301 302 303 304 305 306
  iSplitR "HΦ".
  - iExists _. iFrame. iPureIntro. split; first by eapply first_resolve_delete.
    rewrite dom_delete. rewrite <- difference_empty_L. by eapply difference_mono.
  - iApply "HΦ". iPureIntro. by eapply first_resolve_eq.
Qed.

Ralf Jung's avatar
Ralf Jung committed
307
End lifting.