lang.v 16.8 KB
Newer Older
1
From program_logic Require Export language.
2
From prelude Require Export stringmap.
3
From prelude Require Import gmap.
4

5
Module heap_lang.
6
7
Open Scope Z_scope.

8
(** Expressions and vals. *)
9
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
10

11
Inductive base_lit : Set :=
12
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit.
13
Inductive un_op : Set :=
14
  | NegOp | MinusUnOp.
15
16
17
Inductive bin_op : Set :=
  | PlusOp | MinusOp | LeOp | LtOp | EqOp.

18
19
Inductive binder := BAnon | BNamed : string  binder.

20
Delimit Scope binder_scope with binder.
21
Bind Scope binder_scope with binder.
22

Ralf Jung's avatar
Ralf Jung committed
23
Inductive expr :=
24
  (* Base lambda calculus *)
25
  | Var (x : string)
26
  | Rec (f x : binder) (e : expr)
27
  | App (e1 e2 : expr)
28
29
30
31
32
  (* Base types and their operations *)
  | Lit (l : base_lit)
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
33
34
35
36
37
38
39
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
40
  | Case (e0 : expr) (e1 : expr) (e2 : expr)
41
42
43
44
45
46
47
48
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | Cas (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
49

50
51
52
Bind Scope expr_scope with expr.
Delimit Scope expr_scope with E.

53
Inductive val :=
54
  | RecV (f x : binder) (e : expr) (* e should be closed *)
55
  | LitV (l : base_lit)
56
57
58
59
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
60

61
62
Bind Scope val_scope with val.
Delimit Scope val_scope with V.
63

64
Global Instance base_lit_dec_eq (l1 l2 : base_lit) : Decision (l1 = l2).
65
Proof. solve_decision. Defined.
66
Global Instance un_op_dec_eq (op1 op2 : un_op) : Decision (op1 = op2).
67
Proof. solve_decision. Defined.
68
Global Instance bin_op_dec_eq (op1 op2 : bin_op) : Decision (op1 = op2).
69
Proof. solve_decision. Defined.
70
71
Global Instance binder_dec_eq (x1 x2 : binder) : Decision (x1 = x2).
Proof. solve_decision. Defined.
72
Global Instance expr_dec_eq (e1 e2 : expr) : Decision (e1 = e2).
73
Proof. solve_decision. Defined.
74
Global Instance val_dec_eq (v1 v2 : val) : Decision (v1 = v2).
75
Proof. solve_decision. Defined.
76

77
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
78
  match v with
79
  | RecV f x e => Rec f x e
80
  | LitV l => Lit l
81
82
83
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
84
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
85
  end.
86
Fixpoint to_val (e : expr) : option val :=
87
  match e with
88
  | Rec f x e => Some (RecV f x e)
89
  | Lit l => Some (LitV l)
90
91
92
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
93
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
94
  | _ => None
95
96
  end.

97
98
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
99

100
(** Evaluation contexts *)
101
102
103
Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
104
105
106
107
  | UnOpCtx (op : un_op)
  | BinOpLCtx (op : bin_op) (e2 : expr)
  | BinOpRCtx (op : bin_op) (v1 : val)
  | IfCtx (e1 e2 : expr)
108
109
110
111
112
113
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
114
  | CaseCtx (e1 : expr) (e2 : expr)
115
116
117
118
119
120
121
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val)
  | CasLCtx (e1 : expr)  (e2 : expr)
  | CasMCtx (v0 : val) (e2 : expr)
  | CasRCtx (v0 : val) (v1 : val).
122

123
Notation ectx := (list ectx_item).
124

125
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
126
127
128
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
129
130
131
132
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
133
134
135
136
137
138
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
139
  | CaseCtx e1 e2 => Case e e1 e2
140
141
142
143
144
145
146
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
147
  end.
148
Definition fill (K : ectx) (e : expr) : expr := fold_right fill_item e K.
Ralf Jung's avatar
Ralf Jung committed
149

150
(** Substitution *)
151
(** We have [subst' e BAnon v = e] to deal with anonymous binders *)
152
153
Fixpoint subst (e : expr) (x : string) (v : val) : expr :=
  match e with
154
155
156
  | Var y => if decide (x = y) then of_val v else Var y
  | Rec f y e =>
     Rec f y (if decide (BNamed x  f  BNamed x  y) then subst e x v else e)
157
158
159
160
161
162
163
164
165
166
  | App e1 e2 => App (subst e1 x v) (subst e2 x v)
  | Lit l => Lit l
  | UnOp op e => UnOp op (subst e x v)
  | BinOp op e1 e2 => BinOp op (subst e1 x v) (subst e2 x v)
  | If e0 e1 e2 => If (subst e0 x v) (subst e1 x v) (subst e2 x v)
  | Pair e1 e2 => Pair (subst e1 x v) (subst e2 x v)
  | Fst e => Fst (subst e x v)
  | Snd e => Snd (subst e x v)
  | InjL e => InjL (subst e x v)
  | InjR e => InjR (subst e x v)
167
168
  | Case e0 e1 e2 =>
     Case (subst e0 x v) (subst e1 x v) (subst e2 x v)
169
170
171
172
173
174
175
  | Fork e => Fork (subst e x v)
  | Loc l => Loc l
  | Alloc e => Alloc (subst e x v)
  | Load e => Load (subst e x v)
  | Store e1 e2 => Store (subst e1 x v) (subst e2 x v)
  | Cas e0 e1 e2 => Cas (subst e0 x v) (subst e1 x v) (subst e2 x v)
  end.
176
Definition subst' (e : expr) (mx : binder) (v : val) : expr :=
177
  match mx with BNamed x => subst e x v | BAnon => e end.
178

179
(** The stepping relation *)
180
181
Definition un_op_eval (op : un_op) (l : base_lit) : option base_lit :=
  match op, l with
182
  | NegOp, LitBool b => Some (LitBool (negb b))
183
  | MinusUnOp, LitInt n => Some (LitInt (- n))
184
185
186
187
188
  | _, _ => None
  end.

Definition bin_op_eval (op : bin_op) (l1 l2 : base_lit) : option base_lit :=
  match op, l1, l2 with
189
190
191
192
193
  | PlusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 + n2)
  | MinusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 - n2)
  | LeOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1  n2)
  | LtOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 < n2)
  | EqOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 = n2)
194
195
196
  | _, _, _ => None
  end.

197
Inductive head_step : expr  state  expr  state  option expr  Prop :=
198
  | BetaS f x e1 e2 v2 σ :
199
     to_val e2 = Some v2 
200
     head_step (App (Rec f x e1) e2) σ
201
       (subst' (subst' e1 f (RecV f x e1)) x v2) σ None
202
  | UnOpS op l l' σ :
203
204
     un_op_eval op l = Some l'  
     head_step (UnOp op (Lit l)) σ (Lit l') σ None
205
  | BinOpS op l1 l2 l' σ :
206
207
208
     bin_op_eval op l1 l2 = Some l'  
     head_step (BinOp op (Lit l1) (Lit l2)) σ (Lit l') σ None
  | IfTrueS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
209
     head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ None
210
  | IfFalseS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
211
     head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ None
212
213
214
215
216
217
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
218
  | CaseLS e0 v0 e1 e2 σ :
219
     to_val e0 = Some v0 
220
221
     head_step (Case (InjL e0) e1 e2) σ (App e1 e0) σ None
  | CaseRS e0 v0 e1 e2 σ :
222
     to_val e0 = Some v0 
223
     head_step (Case (InjR e0) e1 e2) σ (App e2 e0) σ None
224
  | ForkS e σ:
225
     head_step (Fork e) σ (Lit LitUnit) σ (Some e)
226
227
228
229
230
231
232
233
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
234
     head_step (Store (Loc l) e) σ (Lit LitUnit) (<[l:=v]>σ) None
235
236
237
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
Ralf Jung's avatar
Ralf Jung committed
238
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool false) σ None
239
240
241
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
Ralf Jung's avatar
Ralf Jung committed
242
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
243

244
(** Atomic expressions *)
245
Definition atomic (e: expr) : Prop :=
246
247
248
249
250
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
Ralf Jung's avatar
Ralf Jung committed
251
252
  (* Make "skip" atomic *)
  | App (Rec _ _ (Lit _)) (Lit _) => True
253
254
  | _ => False
  end.
255

256
257
258
259
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
Inductive prim_step
    (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
260
  Ectx_step K e1' e2' :
261
262
263
264
265
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
266
Proof. by induction v; simplify_option_eq. Qed.
267

268
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
269
Proof.
270
  revert v; induction e; intros; simplify_option_eq; auto with f_equal.
271
Qed.
272

273
274
Instance: Inj (=) (=) of_val.
Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
275

276
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
277
Proof. destruct Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
278

279
Instance ectx_fill_inj K : Inj (=) (=) (fill K).
280
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
281

282
283
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
284

285
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
286
Proof.
287
  intros [v' Hv']; revert v' Hv'.
288
  induction K as [|[]]; intros; simplify_option_eq; eauto.
289
Qed.
290

291
292
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
293

294
Lemma val_head_stuck e1 σ1 e2 σ2 ef :
295
296
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
297

298
299
Lemma val_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, val_head_stuck. Qed.
300

301
302
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
303

304
305
Lemma atomic_fill_item Ki e : atomic (fill_item Ki e)  is_Some (to_val e).
Proof.
306
  intros. destruct Ki; simplify_eq/=; destruct_and?;
307
308
309
    repeat (case_match || contradiction); eauto.
Qed.

310
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
311
Proof.
312
313
  destruct K as [|Ki K]; [done|].
  rewrite eq_None_not_Some=> /= ? []; eauto using atomic_fill_item, fill_val.
314
Qed.
315

316
317
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Ralf Jung's avatar
Ralf Jung committed
318
Proof.
319
  destruct 2; simpl; rewrite ?to_of_val; try by eauto.
320
  unfold subst'; repeat (case_match || contradiction || simplify_eq/=); eauto.
Ralf Jung's avatar
Ralf Jung committed
321
Qed.
322

323
324
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
325
Proof.
326
  intros Hatomic [K e1' e2' -> -> Hstep].
327
  assert (K = []) as -> by eauto 10 using atomic_fill, val_head_stuck.
328
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
329
Qed.
330

331
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
332
  head_step (fill_item Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
333
Proof. destruct Ki; inversion_clear 1; simplify_option_eq; eauto. Qed.
334

335
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
336
  to_val e1 = None  to_val e2 = None 
337
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
338
Proof.
339
  destruct Ki1, Ki2; intros; try discriminate; simplify_eq/=;
340
    repeat match goal with
341
342
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
343
Qed.
344

345
346
347
348
349
350
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
351
Proof.
352
353
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
354
  destruct K' as [|Ki' K']; simplify_eq/=.
Ralf Jung's avatar
Ralf Jung committed
355
  { exfalso; apply (eq_None_not_Some (to_val (fill K e1)));
356
357
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
358
  eauto using fill_item_no_val_inj, val_head_stuck, fill_not_val.
359
Qed.
360

361
362
363
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
364
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

(** Closed expressions *)
Definition of_binder (mx : binder) : stringset :=
  match mx with BAnon =>  | BNamed x => {[ x ]} end.
Lemma elem_of_of_binder x mx: x  of_binder mx  mx = BNamed x.
Proof. destruct mx; set_solver. Qed.
Global Instance set_unfold_of_binder (mx : binder) x :
  SetUnfold (x  of_binder mx) (mx = BNamed x).
Proof. constructor; destruct mx; set_solver. Qed.

Fixpoint is_closed (X : stringset) (e : expr) : bool :=
  match e with
  | Var x => bool_decide (x  X)
  | Rec f y e => is_closed (of_binder f  of_binder y  X) e
  | App e1 e2 => is_closed X e1 && is_closed X e2
  | Lit l => true
  | UnOp _ e => is_closed X e
  | BinOp _ e1 e2 => is_closed X e1 && is_closed X e2
  | If e0 e1 e2 => is_closed X e0 && is_closed X e1 && is_closed X e2
  | Pair e1 e2 => is_closed X e1 && is_closed X e2
  | Fst e => is_closed X e
  | Snd e => is_closed X e
  | InjL e => is_closed X e
  | InjR e => is_closed X e
  | Case e0 e1 e2 => is_closed X e0 && is_closed X e1 && is_closed X e2
  | Fork e => is_closed X e
  | Loc l => true
  | Alloc e => is_closed X e
  | Load e => is_closed X e
  | Store e1 e2 => is_closed X e1 && is_closed X e2
  | Cas e0 e1 e2 => is_closed X e0 && is_closed X e1 && is_closed X e2
  end.
Class Closed (e : expr) := closed :  x v, subst e x v = e.

Lemma is_closed_subst_same X e x v : is_closed X e  x  X  subst e x v = e.
Proof.
  revert X. induction e; simpl;
    repeat case_decide; naive_solver eauto with f_equal set_solver.
Qed.
Lemma is_closed_Closed e : is_closed  e  Closed e.
Proof. intros ? x v. by eapply is_closed_subst_same, not_elem_of_empty. Qed.

Ltac solve_closed := apply is_closed_Closed; vm_compute; exact I.

Lemma is_closed_weaken X Y e : is_closed X e  X  Y  is_closed Y e.
Proof.
  revert X Y.
  induction e; simpl; intros; naive_solver eauto with f_equal set_solver.
Qed.

Lemma is_closed_fill_item X Ki e : is_closed X (fill_item Ki e)  is_closed X e.
Proof. destruct Ki; rewrite /= ?andb_True; tauto. Qed.
Lemma is_closed_fill X K e : is_closed X (fill K e)  is_closed X e.
Proof. induction K; simpl; eauto using is_closed_fill_item. Qed.

Lemma is_closed_subst X e x v :
  is_closed ({[x]}  X) e  is_closed  (of_val v)  is_closed X (subst e x v).
Proof.
  revert X. elim: e; simpl; try by intros; destruct_and?; split_and?; auto.
  - intros y X; rewrite bool_decide_spec=>??.
    case_decide; subst; last set_solver.
    eauto using is_closed_weaken with set_solver.
  - intros f y e IH X ??. case_decide as Hx.
    + apply IH; clear IH; eauto using is_closed_weaken with set_solver.
    + clear IH; apply not_and_l in Hx;
        destruct Hx as [Hx|Hx]; apply dec_stable in Hx; subst;
        eauto using is_closed_weaken with set_solver.
Qed.
Lemma is_closed_subst' X e x v :
  is_closed (of_binder x  X) e  is_closed  (of_val v) 
  is_closed X (subst' e x v).
Proof. destruct x; rewrite /= ?left_id_L; auto using is_closed_subst. Qed.
Lemma is_closed_head_step e1 σ1 e2 σ2 ef :
  (* for load, the state should be closed *)
  match e1 with Load _ => False | _ => True end 
  head_step e1 σ1 e2 σ2 ef  is_closed  e1  is_closed  e2.
Proof.
  destruct 2; rewrite /= ?andb_True; try
    match goal with H : to_val _ = _ |- _ => apply of_to_val in H; subst end;
    try tauto.
  intros [??]. repeat apply is_closed_subst'; rewrite /= ?assoc_L; auto.
Qed.
447
448
449
450
451
452
453
454
455
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
  expr := heap_lang.expr; val := heap_lang.val; state := heap_lang.state;
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
456
  heap_lang.val_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
457

458
Global Instance heap_lang_ctx K : LanguageCtx heap_lang (heap_lang.fill K).
459
Proof.
460
  split.
461
462
  - eauto using heap_lang.fill_not_val.
  - intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
463
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
464
  - intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
465
466
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
467
    rewrite heap_lang.fill_app in Heq1; apply (inj _) in Heq1.
Ralf Jung's avatar
Ralf Jung committed
468
    exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
469
    econstructor; eauto.
470
Qed.
471
472
473

Global Instance heap_lang_ctx_item Ki :
  LanguageCtx heap_lang (heap_lang.fill_item Ki).
474
Proof. change (LanguageCtx heap_lang (heap_lang.fill [Ki])). apply _. Qed.