heap_lang.v 12.5 KB
Newer Older
1
Require Export program_logic.language prelude.strings.
2
Require Import prelude.gmap.
3

4
Module heap_lang.
5
6
Open Scope Z_scope.

7
(** Expressions and vals. *)
8
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
9

10
Inductive base_lit : Set :=
11
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit.
12
Inductive un_op : Set :=
13
  | NegOp | MinusUnOp.
14
15
16
Inductive bin_op : Set :=
  | PlusOp | MinusOp | LeOp | LtOp | EqOp.

Ralf Jung's avatar
Ralf Jung committed
17
Inductive expr :=
18
  (* Base lambda calculus *)
19
20
  | Var (x : string)
  | Rec (f x : string) (e : expr)
21
  | App (e1 e2 : expr)
22
23
24
25
26
  (* Base types and their operations *)
  | Lit (l : base_lit)
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
27
28
29
30
31
32
33
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
34
  | Case (e0 : expr) (x1 : string) (e1 : expr) (x2 : string) (e2 : expr)
35
36
37
38
39
40
41
42
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | Cas (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
43

44
Inductive val :=
45
  | RecV (f x : string) (e : expr) (* e should be closed *)
46
  | LitV (l : base_lit)
47
48
49
50
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
51

52
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
53
  match v with
54
  | RecV f x e => Rec f x e
55
  | LitV l => Lit l
56
57
58
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
59
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
60
  end.
61
Fixpoint to_val (e : expr) : option val :=
62
  match e with
63
  | Rec f x e => Some (RecV f x e)
64
  | Lit l => Some (LitV l)
65
66
67
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
68
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
69
  | _ => None
70
71
  end.

72
73
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
74

75
(** Evaluation contexts *)
76
77
78
Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
79
80
81
82
  | UnOpCtx (op : un_op)
  | BinOpLCtx (op : bin_op) (e2 : expr)
  | BinOpRCtx (op : bin_op) (v1 : val)
  | IfCtx (e1 e2 : expr)
83
84
85
86
87
88
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
89
  | CaseCtx (x1 : string) (e1 : expr) (x2 : string) (e2 : expr)
90
91
92
93
94
95
96
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val)
  | CasLCtx (e1 : expr)  (e2 : expr)
  | CasMCtx (v0 : val) (e2 : expr)
  | CasRCtx (v0 : val) (v1 : val).
97

98
Notation ectx := (list ectx_item).
99

100
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
101
102
103
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
104
105
106
107
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
108
109
110
111
112
113
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
114
  | CaseCtx x1 e1 x2 e2 => Case e x1 e1 x2 e2
115
116
117
118
119
120
121
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
122
  end.
123
Definition fill (K : ectx) (e : expr) : expr := fold_right fill_item e K.
Ralf Jung's avatar
Ralf Jung committed
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
(** Substitution *)
(** We have [subst e "" v = e] to deal with anonymous binders *)
Fixpoint subst (e : expr) (x : string) (v : val) : expr :=
  match e with
  | Var y => if decide (x = y  x  "") then of_val v else Var y
  | Rec f y e => Rec f y (if decide (x  f  x  y) then subst e x v else e)
  | App e1 e2 => App (subst e1 x v) (subst e2 x v)
  | Lit l => Lit l
  | UnOp op e => UnOp op (subst e x v)
  | BinOp op e1 e2 => BinOp op (subst e1 x v) (subst e2 x v)
  | If e0 e1 e2 => If (subst e0 x v) (subst e1 x v) (subst e2 x v)
  | Pair e1 e2 => Pair (subst e1 x v) (subst e2 x v)
  | Fst e => Fst (subst e x v)
  | Snd e => Snd (subst e x v)
  | InjL e => InjL (subst e x v)
  | InjR e => InjR (subst e x v)
  | Case e0 x1 e1 x2 e2 =>
     Case (subst e0 x v)
       x1 (if decide (x  x1) then subst e1 x v else e1)
       x2 (if decide (x  x2) then subst e2 x v else e2)
  | Fork e => Fork (subst e x v)
  | Loc l => Loc l
  | Alloc e => Alloc (subst e x v)
  | Load e => Load (subst e x v)
  | Store e1 e2 => Store (subst e1 x v) (subst e2 x v)
  | Cas e0 e1 e2 => Cas (subst e0 x v) (subst e1 x v) (subst e2 x v)
  end.

153
(** The stepping relation *)
154
155
Definition un_op_eval (op : un_op) (l : base_lit) : option base_lit :=
  match op, l with
156
  | NegOp, LitBool b => Some (LitBool (negb b))
157
  | MinusUnOp, LitInt n => Some (LitInt (- n))
158
159
160
161
162
  | _, _ => None
  end.

Definition bin_op_eval (op : bin_op) (l1 l2 : base_lit) : option base_lit :=
  match op, l1, l2 with
163
164
165
166
167
  | PlusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 + n2)
  | MinusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 - n2)
  | LeOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1  n2)
  | LtOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 < n2)
  | EqOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 = n2)
168
169
170
  | _, _, _ => None
  end.

171
Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
172
  | BetaS f x e1 e2 v2 σ :
173
     to_val e2 = Some v2 
174
175
176
     head_step (App (Rec f x e1) e2) σ
       (subst (subst e1 f (RecV f x e1)) x v2) σ None
  | UnOpS op l l' σ :
177
178
     un_op_eval op l = Some l'  
     head_step (UnOp op (Lit l)) σ (Lit l') σ None
179
  | BinOpS op l1 l2 l' σ :
180
181
182
     bin_op_eval op l1 l2 = Some l'  
     head_step (BinOp op (Lit l1) (Lit l2)) σ (Lit l') σ None
  | IfTrueS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
183
     head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ None
184
  | IfFalseS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
185
     head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ None
186
187
188
189
190
191
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
192
  | CaseLS e0 v0 x1 e1 x2 e2 σ :
193
     to_val e0 = Some v0 
194
195
     head_step (Case (InjL e0) x1 e1 x2 e2) σ (subst e1 x1 v0) σ None
  | CaseRS e0 v0 x1 e1 x2 e2 σ :
196
     to_val e0 = Some v0 
197
     head_step (Case (InjR e0) x1 e1 x2 e2) σ (subst e2 x2 v0) σ None
198
  | ForkS e σ:
199
     head_step (Fork e) σ (Lit LitUnit) σ (Some e)
200
201
202
203
204
205
206
207
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
208
     head_step (Store (Loc l) e) σ (Lit LitUnit) (<[l:=v]>σ) None
209
210
211
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
Ralf Jung's avatar
Ralf Jung committed
212
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool false) σ None
213
214
215
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
Ralf Jung's avatar
Ralf Jung committed
216
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
217

218
(** Atomic expressions *)
219
Definition atomic (e: expr) : Prop :=
220
221
222
223
224
225
226
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
  | _ => False
  end.
227

228
229
230
231
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
Inductive prim_step
    (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
232
  Ectx_step K e1' e2' :
233
234
235
236
237
238
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof. by induction v; simplify_option_equality. Qed.
239

240
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
241
Proof.
242
  revert v; induction e; intros; simplify_option_equality; auto with f_equal.
243
Qed.
244

245
246
Instance: Injective (=) (=) of_val.
Proof. by intros ?? Hv; apply (injective Some); rewrite -!to_of_val Hv. Qed.
247

248
Instance fill_item_inj Ki : Injective (=) (=) (fill_item Ki).
249
Proof. destruct Ki; intros ???; simplify_equality'; auto with f_equal. Qed.
250

251
252
Instance ectx_fill_inj K : Injective (=) (=) (fill K).
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
253

254
255
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
256

257
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
258
Proof.
259
260
  intros [v' Hv']; revert v' Hv'.
  induction K as [|[]]; intros; simplify_option_equality; eauto.
261
Qed.
262

263
264
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
265

266
267
268
Lemma values_head_stuck e1 σ1 e2 σ2 ef :
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
269

270
271
Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.
272

273
274
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
275

276
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
277
Proof.
278
279
  rewrite eq_None_not_Some.
  destruct K as [|[]]; naive_solver eauto using fill_val.
280
Qed.
281

282
283
284
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Proof. destruct 2; simpl; rewrite ?to_of_val; naive_solver. Qed.
285

286
287
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
288
Proof.
289
290
291
  intros Hatomic [K e1' e2' -> -> Hstep].
  assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
292
Qed.
293

294
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
295
  head_step (fill_item Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
296
Proof. destruct Ki; inversion_clear 1; simplify_option_equality; eauto. Qed.
297

298
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
299
  to_val e1 = None  to_val e2 = None 
300
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
301
Proof.
302
  destruct Ki1, Ki2; intros; try discriminate; simplify_equality';
303
    repeat match goal with
304
305
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
306
Qed.
307

308
309
310
311
312
313
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
314
Proof.
315
316
317
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
  destruct K' as [|Ki' K']; simplify_equality'.
Ralf Jung's avatar
Ralf Jung committed
318
  { exfalso; apply (eq_None_not_Some (to_val (fill K e1)));
319
320
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
321
  eauto using fill_item_no_val_inj, values_head_stuck, fill_not_val.
322
Qed.
323

324
325
326
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
327
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.
328

329
330
Lemma subst_empty e v : subst e "" v = e.
Proof. induction e; simpl; repeat case_decide; intuition auto with f_equal. Qed.
331
332
333
334
335
336
337
338
339
340
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
  expr := heap_lang.expr; val := heap_lang.val; state := heap_lang.state;
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
  heap_lang.values_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
341

342
Global Instance heap_lang_ctx K : LanguageCtx heap_lang (heap_lang.fill K).
343
Proof.
344
345
  split.
  * eauto using heap_lang.fill_not_val.
346
  * intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
347
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
348
  * intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
349
350
351
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
    rewrite heap_lang.fill_app in Heq1; apply (injective _) in Heq1.
Ralf Jung's avatar
Ralf Jung committed
352
    exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
353
    econstructor; eauto.
354
Qed.
355
356
357
358
359
360
361

Global Instance heap_lang_ctx_item Ki :
  LanguageCtx heap_lang (heap_lang.fill_item Ki).
Proof.
  change (LanguageCtx heap_lang (heap_lang.fill [Ki])).
  by apply _.
Qed.