lang.v 17.6 KB
Newer Older
1
From iris.program_logic Require Export ectx_language ectxi_language.
2
From iris.algebra Require Export ofe.
Ralf Jung's avatar
Ralf Jung committed
3
4
From stdpp Require Export strings.
From stdpp Require Import gmap.
5
Set Default Proof Using "Type".
6

7
Module heap_lang.
8
9
Open Scope Z_scope.

10
(** Expressions and vals. *)
11
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
12

13
Inductive base_lit : Set :=
14
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit | LitLoc (l : loc).
15
Inductive un_op : Set :=
16
  | NegOp | MinusUnOp.
17
18
19
Inductive bin_op : Set :=
  | PlusOp | MinusOp | LeOp | LtOp | EqOp.

20
Inductive binder := BAnon | BNamed : string  binder.
Ralf Jung's avatar
Ralf Jung committed
21
22
Delimit Scope binder_scope with bind.
Bind Scope binder_scope with binder.
23
24
25
Definition cons_binder (mx : binder) (X : list string) : list string :=
  match mx with BAnon => X | BNamed x => x :: X end.
Infix ":b:" := cons_binder (at level 60, right associativity).
26
Instance binder_eq_dec_eq : EqDecision binder.
27
28
29
30
31
32
33
34
35
Proof. solve_decision. Defined.

Instance set_unfold_cons_binder x mx X P :
  SetUnfold (x  X) P  SetUnfold (x  mx :b: X) (BNamed x = mx  P).
Proof.
  constructor. rewrite -(set_unfold (x  X) P).
  destruct mx; rewrite /= ?elem_of_cons; naive_solver.
Qed.

36
Inductive expr :=
37
  (* Base lambda calculus *)
38
39
40
  | Var (x : string)
  | Rec (f x : binder) (e : expr)
  | App (e1 e2 : expr)
41
42
  (* Base types and their operations *)
  | Lit (l : base_lit)
43
44
45
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
46
  (* Products *)
47
48
49
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
50
  (* Sums *)
51
52
53
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : expr) (e2 : expr)
54
  (* Concurrency *)
55
  | Fork (e : expr)
56
  (* Heap *)
57
58
59
60
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | CAS (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
61

62
Bind Scope expr_scope with expr.
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Fixpoint is_closed (X : list string) (e : expr) : bool :=
  match e with
  | Var x => bool_decide (x  X)
  | Rec f x e => is_closed (f :b: x :b: X) e
  | Lit _ => true
  | UnOp _ e | Fst e | Snd e | InjL e | InjR e | Fork e | Alloc e | Load e =>
     is_closed X e
  | App e1 e2 | BinOp _ e1 e2 | Pair e1 e2 | Store e1 e2 =>
     is_closed X e1 && is_closed X e2
  | If e0 e1 e2 | Case e0 e1 e2 | CAS e0 e1 e2 =>
     is_closed X e0 && is_closed X e1 && is_closed X e2
  end.

Robbert Krebbers's avatar
Robbert Krebbers committed
77
Class Closed (X : list string) (e : expr) := closed : is_closed X e.
78
79
80
81
Instance closed_proof_irrel env e : ProofIrrel (Closed env e).
Proof. rewrite /Closed. apply _. Qed.
Instance closed_decision env e : Decision (Closed env e).
Proof. rewrite /Closed. apply _. Qed.
82

83
Inductive val :=
84
  | RecV (f x : binder) (e : expr) `{!Closed (f :b: x :b: []) e}
85
  | LitV (l : base_lit)
86
87
  | PairV (v1 v2 : val)
  | InjLV (v : val)
88
  | InjRV (v : val).
Ralf Jung's avatar
Ralf Jung committed
89

90
Bind Scope val_scope with val.
91

92
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
93
  match v with
94
  | RecV f x e _ => Rec f x e
95
  | LitV l => Lit l
96
97
98
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
Ralf Jung's avatar
Ralf Jung committed
99
  end.
100

101
Fixpoint to_val (e : expr) : option val :=
102
  match e with
103
104
  | Rec f x e =>
     if decide (Closed (f :b: x :b: []) e) then Some (RecV f x e) else None
105
  | Lit l => Some (LitV l)
106
107
108
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
Ralf Jung's avatar
Ralf Jung committed
109
  | _ => None
110
111
  end.

112
113
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
(** Equality and other typeclass stuff *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof.
  by induction v; simplify_option_eq; repeat f_equal; try apply (proof_irrel _).
Qed.

Lemma of_to_val e v : to_val e = Some v  of_val v = e.
Proof.
  revert v; induction e; intros v ?; simplify_option_eq; auto with f_equal.
Qed.

Instance of_val_inj : Inj (=) (=) of_val.
Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.

129
Instance base_lit_eq_dec : EqDecision base_lit.
130
Proof. solve_decision. Defined.
131
Instance un_op_eq_dec : EqDecision un_op.
132
Proof. solve_decision. Defined.
133
Instance bin_op_eq_dec : EqDecision bin_op.
134
Proof. solve_decision. Defined.
135
Instance expr_eq_dec : EqDecision expr.
136
Proof. solve_decision. Defined.
137
Instance val_eq_dec : EqDecision val.
138
Proof.
139
 refine (λ v v', cast_if (decide (of_val v = of_val v'))); abstract naive_solver.
140
141
Defined.

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
Instance base_lit_countable : Countable base_lit.
Proof.
 refine (inj_countable' (λ l, match l with
  | LitInt n => inl (inl n) | LitBool b => inl (inr b)
  | LitUnit => inr (inl ()) | LitLoc l => inr (inr l)
  end) (λ l, match l with
  | inl (inl n) => LitInt n | inl (inr b) => LitBool b
  | inr (inl ()) => LitUnit | inr (inr l) => LitLoc l
  end) _); by intros [].
Qed.
Instance un_op_finite : Countable un_op.
Proof.
 refine (inj_countable' (λ op, match op with NegOp => 0 | MinusUnOp => 1 end)
  (λ n, match n with 0 => NegOp | _ => MinusUnOp end) _); by intros [].
Qed.
Instance bin_op_countable : Countable bin_op.
Proof.
 refine (inj_countable' (λ op, match op with
  | PlusOp => 0 | MinusOp => 1 | LeOp => 2 | LtOp => 3 | EqOp => 4
  end) (λ n, match n with
  | 0 => PlusOp | 1 => MinusOp | 2 => LeOp | 3 => LtOp | _ => EqOp
  end) _); by intros [].
Qed.
Instance binder_countable : Countable binder.
Proof.
 refine (inj_countable' (λ b, match b with BNamed s => Some s | BAnon => None end)
  (λ b, match b with Some s => BNamed s | None => BAnon end) _); by intros [].
Qed.
Instance expr_countable : Countable expr.
Proof.
 set (enc := fix go e :=
  match e with
  | Var x => GenLeaf (inl (inl x))
  | Rec f x e => GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); go e]
  | App e1 e2 => GenNode 1 [go e1; go e2]
  | Lit l => GenLeaf (inr (inl l))
  | UnOp op e => GenNode 2 [GenLeaf (inr (inr (inl op))); go e]
  | BinOp op e1 e2 => GenNode 3 [GenLeaf (inr (inr (inr op))); go e1; go e2]
  | If e0 e1 e2 => GenNode 4 [go e0; go e1; go e2]
  | Pair e1 e2 => GenNode 5 [go e1; go e2]
  | Fst e => GenNode 6 [go e]
  | Snd e => GenNode 7 [go e]
  | InjL e => GenNode 8 [go e]
  | InjR e => GenNode 9 [go e]
  | Case e0 e1 e2 => GenNode 10 [go e0; go e1; go e2]
  | Fork e => GenNode 11 [go e]
  | Alloc e => GenNode 12 [go e]
  | Load e => GenNode 13 [go e]
  | Store e1 e2 => GenNode 14 [go e1; go e2]
  | CAS e0 e1 e2 => GenNode 15 [go e0; go e1; go e2]
  end).
 set (dec := fix go e :=
  match e with
  | GenLeaf (inl (inl x)) => Var x
  | GenNode 0 [GenLeaf (inl (inr f)); GenLeaf (inl (inr x)); e] => Rec f x (go e)
  | GenNode 1 [e1; e2] => App (go e1) (go e2)
  | GenLeaf (inr (inl l)) => Lit l
  | GenNode 2 [GenLeaf (inr (inr (inl op))); e] => UnOp op (go e)
  | GenNode 3 [GenLeaf (inr (inr (inr op))); e1; e2] => BinOp op (go e1) (go e2)
  | GenNode 4 [e0; e1; e2] => If (go e0) (go e1) (go e2)
  | GenNode 5 [e1; e2] => Pair (go e1) (go e2)
  | GenNode 6 [e] => Fst (go e)
  | GenNode 7 [e] => Snd (go e)
  | GenNode 8 [e] => InjL (go e)
  | GenNode 9 [e] => InjR (go e)
  | GenNode 10 [e0; e1; e2] => Case (go e0) (go e1) (go e2)
  | GenNode 11 [e] => Fork (go e)
  | GenNode 12 [e] => Alloc (go e)
  | GenNode 13 [e] => Load (go e)
  | GenNode 14 [e1; e2] => Store (go e1) (go e2)
  | GenNode 15 [e0; e1; e2] => CAS (go e0) (go e1) (go e2)
  | _ => Lit LitUnit (* dummy *)
  end).
 refine (inj_countable' enc dec _). intros e. induction e; f_equal/=; auto.
Qed.
Instance val_countable : Countable val.
Proof. refine (inj_countable of_val to_val _); auto using to_of_val. Qed.

220
221
222
223
224
225
226
Instance expr_inhabited : Inhabited expr := populate (Lit LitUnit).
Instance val_inhabited : Inhabited val := populate (LitV LitUnit).

Canonical Structure stateC := leibnizC state.
Canonical Structure valC := leibnizC val.
Canonical Structure exprC := leibnizC expr.

227
(** Evaluation contexts *)
228
Inductive ectx_item :=
229
  | AppLCtx (e2 : expr)
230
  | AppRCtx (v1 : val)
231
  | UnOpCtx (op : un_op)
232
  | BinOpLCtx (op : bin_op) (e2 : expr)
233
  | BinOpRCtx (op : bin_op) (v1 : val)
234
235
  | IfCtx (e1 e2 : expr)
  | PairLCtx (e2 : expr)
236
237
238
239
240
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
241
  | CaseCtx (e1 : expr) (e2 : expr)
242
243
  | AllocCtx
  | LoadCtx
244
  | StoreLCtx (e2 : expr)
245
  | StoreRCtx (v1 : val)
246
  | CasLCtx (e1 : expr) (e2 : expr)
247
  | CasMCtx (v0 : val) (e2 : expr)
248
  | CasRCtx (v0 : val) (v1 : val).
249

250
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
251
252
253
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
254
255
256
257
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
258
259
260
261
262
263
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
264
  | CaseCtx e1 e2 => Case e e1 e2
265
266
  | AllocCtx => Alloc e
  | LoadCtx => Load e
267
  | StoreLCtx e2 => Store e e2 
268
  | StoreRCtx v1 => Store (of_val v1) e
269
270
271
  | CasLCtx e1 e2 => CAS e e1 e2
  | CasMCtx v0 e2 => CAS (of_val v0) e e2
  | CasRCtx v0 v1 => CAS (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
272
273
  end.

274
(** Substitution *)
275
276
277
Fixpoint subst (x : string) (es : expr) (e : expr)  : expr :=
  match e with
  | Var y => if decide (x = y) then es else Var y
278
  | Rec f y e =>
279
280
     Rec f y $ if decide (BNamed x  f  BNamed x  y) then subst x es e else e
  | App e1 e2 => App (subst x es e1) (subst x es e2)
281
  | Lit l => Lit l
282
283
284
285
286
287
288
289
290
291
292
293
294
295
  | UnOp op e => UnOp op (subst x es e)
  | BinOp op e1 e2 => BinOp op (subst x es e1) (subst x es e2)
  | If e0 e1 e2 => If (subst x es e0) (subst x es e1) (subst x es e2)
  | Pair e1 e2 => Pair (subst x es e1) (subst x es e2)
  | Fst e => Fst (subst x es e)
  | Snd e => Snd (subst x es e)
  | InjL e => InjL (subst x es e)
  | InjR e => InjR (subst x es e)
  | Case e0 e1 e2 => Case (subst x es e0) (subst x es e1) (subst x es e2)
  | Fork e => Fork (subst x es e)
  | Alloc e => Alloc (subst x es e)
  | Load e => Load (subst x es e)
  | Store e1 e2 => Store (subst x es e1) (subst x es e2)
  | CAS e0 e1 e2 => CAS (subst x es e0) (subst x es e1) (subst x es e2)
296
  end.
297

298
Definition subst' (mx : binder) (es : expr) : expr  expr :=
299
  match mx with BNamed x => subst x es | BAnon => id end.
300

301
(** The stepping relation *)
302
303
304
305
Definition un_op_eval (op : un_op) (v : val) : option val :=
  match op, v with
  | NegOp, LitV (LitBool b) => Some $ LitV $ LitBool (negb b)
  | MinusUnOp, LitV (LitInt n) => Some $ LitV $ LitInt (- n)
306
307
308
  | _, _ => None
  end.

309
310
311
312
313
314
315
Definition bin_op_eval (op : bin_op) (v1 v2 : val) : option val :=
  match op, v1, v2 with
  | PlusOp, LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ LitInt (n1 + n2)
  | MinusOp, LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ LitInt (n1 - n2)
  | LeOp, LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ LitBool $ bool_decide (n1  n2)
  | LtOp, LitV (LitInt n1), LitV (LitInt n2) => Some $ LitV $ LitBool $ bool_decide (n1 < n2)
  | EqOp, v1, v2 => Some $ LitV $ LitBool $ bool_decide (v1 = v2)
316
317
318
  | _, _, _ => None
  end.

319
Inductive head_step : expr  state  expr  state  list (expr)  Prop :=
320
  | BetaS f x e1 e2 v2 e' σ :
321
     to_val e2 = Some v2 
322
     Closed (f :b: x :b: []) e1 
323
     e' = subst' x (of_val v2) (subst' f (Rec f x e1) e1) 
324
     head_step (App (Rec f x e1) e2) σ e' σ []
325
326
327
328
329
330
331
332
  | UnOpS op e v v' σ :
     to_val e = Some v 
     un_op_eval op v = Some v'  
     head_step (UnOp op e) σ (of_val v') σ []
  | BinOpS op e1 e2 v1 v2 v' σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     bin_op_eval op v1 v2 = Some v'  
     head_step (BinOp op e1 e2) σ (of_val v') σ []
333
  | IfTrueS e1 e2 σ :
334
     head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ []
335
  | IfFalseS e1 e2 σ :
336
     head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ []
337
338
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
339
     head_step (Fst (Pair e1 e2)) σ e1 σ []
340
341
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
342
     head_step (Snd (Pair e1 e2)) σ e2 σ []
343
  | CaseLS e0 v0 e1 e2 σ :
344
     to_val e0 = Some v0 
345
     head_step (Case (InjL e0) e1 e2) σ (App e1 e0) σ []
346
  | CaseRS e0 v0 e1 e2 σ :
347
     to_val e0 = Some v0 
348
     head_step (Case (InjR e0) e1 e2) σ (App e2 e0) σ []
349
  | ForkS e σ:
350
     head_step (Fork e) σ (Lit LitUnit) σ [e]
351
352
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
353
     head_step (Alloc e) σ (Lit $ LitLoc l) (<[l:=v]>σ) []
354
355
  | LoadS l v σ :
     σ !! l = Some v 
356
     head_step (Load (Lit $ LitLoc l)) σ (of_val v) σ []
357
358
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
359
     head_step (Store (Lit $ LitLoc l) e) σ (Lit LitUnit) (<[l:=v]>σ) []
360
361
362
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
363
     head_step (CAS (Lit $ LitLoc l) e1 e2) σ (Lit $ LitBool false) σ []
364
365
366
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
367
     head_step (CAS (Lit $ LitLoc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) [].
Ralf Jung's avatar
Ralf Jung committed
368

369
(** Basic properties about the language *)
370
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
371
Proof. destruct Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
372

373
374
375
Lemma fill_item_val Ki e :
  is_Some (to_val (fill_item Ki e))  is_Some (to_val e).
Proof. intros [v ?]. destruct Ki; simplify_option_eq; eauto. Qed.
376

377
Lemma val_stuck e1 σ1 e2 σ2 efs : head_step e1 σ1 e2 σ2 efs  to_val e1 = None.
378
Proof. destruct 1; naive_solver. Qed.
379

380
381
Lemma head_ctx_step_val Ki e σ1 e2 σ2 efs :
  head_step (fill_item Ki e) σ1 e2 σ2 efs  is_Some (to_val e).
382
Proof. destruct Ki; inversion_clear 1; simplify_option_eq; by eauto. Qed.
383

384
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
385
  to_val e1 = None  to_val e2 = None 
386
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
387
Proof.
388
  destruct Ki1, Ki2; intros; try discriminate; simplify_eq/=;
389
    repeat match goal with
390
391
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
392
Qed.
393

394
Lemma alloc_fresh e v σ :
395
  let l := fresh (dom (gset loc) σ) in
396
  to_val e = Some v  head_step (Alloc e) σ (Lit (LitLoc l)) (<[l:=v]>σ) [].
Robbert Krebbers's avatar
Robbert Krebbers committed
397
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset loc)), is_fresh. Qed.
398

399
400
401
402
403
(* Misc *)
Lemma to_val_rec f x e `{!Closed (f :b: x :b: []) e} :
  to_val (Rec f x e) = Some (RecV f x e).
Proof. rewrite /to_val. case_decide=> //. do 2 f_equal; apply proof_irrel. Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
404
(** Closed expressions *)
405
Lemma is_closed_weaken X Y e : is_closed X e  X  Y  is_closed Y e.
Robbert Krebbers's avatar
Robbert Krebbers committed
406
407
Proof. revert X Y; induction e; naive_solver (eauto; set_solver). Qed.

408
Lemma is_closed_weaken_nil X e : is_closed [] e  is_closed X e.
409
Proof. intros. by apply is_closed_weaken with [], list_subseteq_nil. Qed.
410

411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
Lemma is_closed_of_val X v : is_closed X (of_val v).
Proof. apply is_closed_weaken_nil. induction v; simpl; auto. Qed.

Lemma is_closed_subst X e x es :
  is_closed [] es  is_closed (x :: X) e  is_closed X (subst x es e).
Proof.
  intros ?. revert X.
  induction e=> X /= ?; destruct_and?; split_and?; simplify_option_eq;
    try match goal with
    | H : ¬(_  _) |- _ => apply not_and_l in H as [?%dec_stable|?%dec_stable]
    end; eauto using is_closed_weaken with set_solver.
Qed.
Lemma is_closed_do_subst' X e x es :
  is_closed [] es  is_closed (x :b: X) e  is_closed X (subst' x es e).
Proof. destruct x; eauto using is_closed_subst. Qed.

(* Substitution *)
Lemma subst_is_closed X e x es : is_closed X e  x  X  subst x es e = e.
Robbert Krebbers's avatar
Robbert Krebbers committed
429
Proof.
430
  revert X. induction e=> X /=; rewrite ?bool_decide_spec ?andb_True=> ??;
Robbert Krebbers's avatar
Robbert Krebbers committed
431
432
    repeat case_decide; simplify_eq/=; f_equal; intuition eauto with set_solver.
Qed.
433

434
435
Lemma subst_is_closed_nil e x es : is_closed [] e  subst x es e = e.
Proof. intros. apply subst_is_closed with []; set_solver. Qed.
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
Lemma subst_subst e x es es' :
  Closed [] es'  subst x es (subst x es' e) = subst x es' e.
Proof.
  intros. induction e; simpl; try (f_equal; by auto);
    simplify_option_eq; auto using subst_is_closed_nil with f_equal.
Qed.
Lemma subst_subst' e x es es' :
  Closed [] es'  subst' x es (subst' x es' e) = subst' x es' e.
Proof. destruct x; simpl; auto using subst_subst. Qed.

Lemma subst_subst_ne e x y es es' :
  Closed [] es  Closed [] es'  x  y 
  subst x es (subst y es' e) = subst y es' (subst x es e).
Proof.
  intros. induction e; simpl; try (f_equal; by auto);
    simplify_option_eq; auto using eq_sym, subst_is_closed_nil with f_equal.
Qed.
Lemma subst_subst_ne' e x y es es' :
  Closed [] es  Closed [] es'  x  y 
  subst' x es (subst' y es' e) = subst' y es' (subst' x es e).
Proof. destruct x, y; simpl; auto using subst_subst_ne with congruence. Qed.

Lemma subst_rec' f y e x es :
  x = f  x = y  x = BAnon 
  subst' x es (Rec f y e) = Rec f y e.
Proof. intros. destruct x; simplify_option_eq; naive_solver. Qed.
Lemma subst_rec_ne' f y e x es :
  (x  f  f = BAnon)  (x  y  y = BAnon) 
  subst' x es (Rec f y e) = Rec f y (subst' x es e).
Proof. intros. destruct x; simplify_option_eq; naive_solver. Qed.
467
468
469
End heap_lang.

(** Language *)
470
471
Program Instance heap_ectxi_lang :
  EctxiLanguage
472
    (heap_lang.expr) heap_lang.val heap_lang.ectx_item heap_lang.state := {|
Robbert Krebbers's avatar
Robbert Krebbers committed
473
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
474
  fill_item := heap_lang.fill_item; head_step := heap_lang.head_step
Robbert Krebbers's avatar
Robbert Krebbers committed
475
|}.
476
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
477
478
  heap_lang.val_stuck, heap_lang.fill_item_val, heap_lang.fill_item_no_val_inj,
  heap_lang.head_ctx_step_val.
479

480
Canonical Structure heap_lang := ectx_lang (heap_lang.expr).
481

482
(* Prefer heap_lang names over ectx_language names. *)
483
Export heap_lang.
484
485
486
487
488
489
490
491
492
493

(** Define some derived forms *)
Notation Lam x e := (Rec BAnon x e).
Notation Let x e1 e2 := (App (Lam x e2) e1).
Notation Seq e1 e2 := (Let BAnon e1 e2).
Notation LamV x e := (RecV BAnon x e).
Notation LetCtx x e2 := (AppRCtx (LamV x e2)).
Notation SeqCtx e2 := (LetCtx BAnon e2).
Notation Skip := (Seq (Lit LitUnit) (Lit LitUnit)).
Notation Match e0 x1 e1 x2 e2 := (Case e0 (Lam x1 e1) (Lam x2 e2)).