agree.v 16.9 KB
Newer Older
1
From iris.algebra Require Export cmra.
Ralf Jung's avatar
Ralf Jung committed
2
From iris.algebra Require Import list.
3
From iris.base_logic Require Import base_logic.
Ralf Jung's avatar
Ralf Jung committed
4
5
6
7
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _  !_ /.
Local Arguments op _ _ _ !_ /.
Local Arguments pcore _ _ !_ /.
Robbert Krebbers's avatar
Robbert Krebbers committed
8

9
Record agree (A : Type) : Type := Agree {
Ralf Jung's avatar
Ralf Jung committed
10
11
  agree_car : A;
  agree_with : list A;
Robbert Krebbers's avatar
Robbert Krebbers committed
12
}.
Ralf Jung's avatar
Ralf Jung committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
Arguments Agree {_} _ _.
Arguments agree_car {_} _.
Arguments agree_with {_} _.

(* Some theory about set-inclusion on lists and lists of which all elements are equal.
   TODO: Move this elsewhere. *)
Definition list_setincl `(R : relation A) (al bl : list A) :=
   a, a  al   b, b  bl  R a b.
Definition list_setequiv `(R : relation A) (al bl : list A) :=
  list_setincl R al bl  list_setincl R bl al.
(* list_agrees is carefully written such that, when applied to a singleton, it is convertible to True. This makes working with agreement much more pleasant. *)
Definition list_agrees `(R : relation A) (al : list A) :=
  match al with
  | [] => True
  | [a] => True
  | a :: al =>  b, b  al  R a b
  end.

Lemma list_agrees_alt `(R : relation A) `{Equivalence _ R} al :
  list_agrees R al  ( a b, a  al  b  al  R a b).
Proof.
  destruct al as [|a [|b al]].
  - split; last done. intros _ ? ? []%elem_of_nil.
  - split; last done. intros _ ? ? ->%elem_of_list_singleton ->%elem_of_list_singleton. done.
  - simpl. split.
    + intros Hl a' b' [->|Ha']%elem_of_cons.
      * intros [->|Hb']%elem_of_cons; first done. auto.
      * intros [->|Hb']%elem_of_cons; first by (symmetry; auto).
        trans a; last by auto. symmetry. auto.
    + intros Hl b' Hb'. apply Hl; set_solver.
Qed.

Section list_theory.
  Context `(R: relation A) `{Equivalence A R}.

  Global Instance: PreOrder (list_setincl R).
  Proof.
    split.
    - intros al a Ha. set_solver.
    - intros al bl cl Hab Hbc a Ha. destruct (Hab _ Ha) as (b & Hb & Rab).
      destruct (Hbc _ Hb) as (c & Hc & Rbc). exists c. split; first done.
      by trans b.
  Qed.

  Global Instance: Equivalence (list_setequiv R).
  Proof.
    split.
    - by split.
    - intros ?? [??]. split; auto.
    - intros ??? [??] [??]. split; etrans; done.
  Qed.

  Global Instance list_setincl_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setincl R) (list_setincl R').
  Proof.
    intros HRR' al bl Hab. intros a Ha. destruct (Hab _ Ha) as (b & Hb & HR).
    exists b. split; first done. exact: HRR'.
  Qed.

  Global Instance list_setequiv_subrel `(R' : relation A) :
    subrelation R R'  subrelation (list_setequiv R) (list_setequiv R').
  Proof. intros HRR' ?? [??]. split; exact: list_setincl_subrel. Qed. 

  Global Instance list_setincl_perm : subrelation () (list_setincl R).
  Proof.
    intros al bl Hab a Ha. exists a. split; last done.
    by rewrite -Hab.
  Qed.

  Global Instance list_setincl_app l :
    Proper (list_setincl R ==> list_setincl R) (app l).
  Proof.
    intros al bl Hab a [Ha|Ha]%elem_of_app.
    - exists a. split; last done. apply elem_of_app. by left.
    - destruct (Hab _ Ha) as (b & Hb & HR). exists b. split; last done.
      apply elem_of_app. by right.
  Qed.

  Global Instance list_setequiv_app l :
    Proper (list_setequiv R ==> list_setequiv R) (app l).
  Proof. intros al bl [??]. split; apply list_setincl_app; done. Qed.

  Global Instance: subrelation () (flip (list_setincl R)).
  Proof. intros ???. apply list_setincl_perm. done. Qed.

  Global Instance list_agrees_setincl :
    Proper (flip (list_setincl R) ==> impl) (list_agrees R).
  Proof.
    move=> al bl /= Hab /list_agrees_alt Hal. apply (list_agrees_alt _) => a b Ha Hb.
    destruct (Hab _ Ha) as (a' & Ha' & HRa).
    destruct (Hab _ Hb) as (b' & Hb' & HRb).
    trans a'; first done. etrans; last done.
    eapply Hal; done.
  Qed.

  Global Instance list_agrees_setequiv :
    Proper (list_setequiv R ==> iff) (list_agrees R).
  Proof.
    intros ?? [??]. split; by apply: list_agrees_setincl.
  Qed.

  Lemma list_setincl_contains al bl :
    ( x, x  al  x  bl)  list_setincl R al bl.
  Proof. intros Hin a Ha. exists a. split; last done. naive_solver. Qed.

  Lemma list_setequiv_equiv al bl :
    ( x, x  al  x  bl)  list_setequiv R al bl.
  Proof.
    intros Hin. split; apply list_setincl_contains; naive_solver.
  Qed.

  Lemma list_agrees_contains al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setincl _),list_setincl_contains. Qed.

  Lemma list_agrees_equiv al bl :
    ( x, x  bl  x  al) 
    list_agrees R al  list_agrees R bl.
  Proof. intros ?. by eapply (list_agrees_setequiv _), list_setequiv_equiv. Qed.

  Lemma list_setincl_singleton a b :
    R a b  list_setincl R [a] [b].
  Proof.
    intros HR c ->%elem_of_list_singleton. exists b. split; last done.
    apply elem_of_list_singleton. done.
  Qed.

  Lemma list_setincl_singleton_rev a b :
    list_setincl R [a] [b]  R a b.
  Proof.
    intros Hl. destruct (Hl a) as (? & ->%elem_of_list_singleton & HR); last done.
    by apply elem_of_list_singleton.
  Qed.

  Lemma list_setequiv_singleton a b :
    R a b  list_setequiv R [a] [b].
  Proof. intros ?. split; by apply list_setincl_singleton. Qed.

  Lemma list_agrees_iff_setincl al a :
    a  al  list_agrees R al  list_setincl R al [a].
  Proof.
    intros Hin. split.
    - move=>/list_agrees_alt Hl b Hb. exists a. split; first set_solver+. exact: Hl.
    - intros Hl. apply (list_agrees_alt _)=> b c Hb Hc.
      destruct (Hl _ Hb) as (? & ->%elem_of_list_singleton & ?).
      destruct (Hl _ Hc) as (? & ->%elem_of_list_singleton & ?).
      by trans a.
  Qed.

  Lemma list_setincl_singleton_in al a :
    a  al  list_setincl R [a] al.
  Proof.
    intros Hin b ->%elem_of_list_singleton. exists a. split; done.
  Qed.

  Global Instance list_setincl_ext : subrelation (Forall2 R) (list_setincl R).
  Proof.
    move=>al bl. induction 1.
    - intros ? []%elem_of_nil.
    - intros a [->|Ha]%elem_of_cons.
      + eexists. split; first constructor. done.
      + destruct (IHForall2 _ Ha) as (b & ? & ?).
        exists b. split; first by constructor. done.
  Qed.

  Global Instance list_setequiv_ext : subrelation (Forall2 R) (list_setequiv R).
  Proof.
    move=>al bl ?. split; apply list_setincl_ext; done.
  Qed.

  Lemma list_agrees_subrel `(R' : relation A) `{Equivalence _ R'} :
    subrelation R R'   l, list_agrees R l  list_agrees R' l.
  Proof. move=> HR l /list_agrees_alt Hl. apply (list_agrees_alt _)=> a b Ha Hb. by apply HR, Hl. Qed.

  Section fmap.
    Context `(R' : relation B) (f : A  B) {Hf: Proper (R ==> R') f}.
    
    Global Instance list_setincl_fmap :
      Proper (list_setincl R ==> list_setincl R') (fmap f).
    Proof.
      intros al bl Hab a' (a & -> & Ha)%elem_of_list_fmap.
      destruct (Hab _ Ha) as (b & Hb & HR). exists (f b).
      split; first eapply elem_of_list_fmap; eauto.
    Qed.
    
    Global Instance list_setequiv_fmap :
      Proper (list_setequiv R ==> list_setequiv R') (fmap f).
    Proof. intros ?? [??]. split; apply list_setincl_fmap; done. Qed.

    Lemma list_agrees_fmap `{Equivalence _ R'} al :
      list_agrees R al  list_agrees R' (f <$> al).
    Proof.
      move=> /list_agrees_alt Hl. apply <-(list_agrees_alt R')=> a' b'.
      intros (a & -> & Ha)%elem_of_list_fmap (b & -> & Hb)%elem_of_list_fmap.
      apply Hf. exact: Hl.
    Qed.
      
  End fmap.

End list_theory.
Robbert Krebbers's avatar
Robbert Krebbers committed
214
215

Section agree.
216
Context {A : ofeT}.
Robbert Krebbers's avatar
Robbert Krebbers committed
217

Ralf Jung's avatar
Ralf Jung committed
218
Definition agree_list (x : agree A) := agree_car x :: agree_with x.
219

Ralf Jung's avatar
Ralf Jung committed
220
221
222
223
Instance agree_validN : ValidN (agree A) := λ n x,
  list_agrees (dist n) (agree_list x).
Instance agree_valid : Valid (agree A) := λ x,
  list_agrees (equiv) (agree_list x).
224

225
Instance agree_dist : Dist (agree A) := λ n x y,
Ralf Jung's avatar
Ralf Jung committed
226
227
228
229
230
231
232
  list_setequiv (dist n) (agree_list x) (agree_list y).
Instance agree_equiv : Equiv (agree A) := λ x y,
   n, list_setequiv (dist n) (agree_list x) (agree_list y).

Definition agree_dist_incl n (x y : agree A) :=
  list_setincl (dist n) (agree_list x) (agree_list y).

233
Definition agree_ofe_mixin : OfeMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
234
235
Proof.
  split.
Ralf Jung's avatar
Ralf Jung committed
236
237
238
239
240
241
  - intros x y; split; intros Hxy; done.
  - split; rewrite /dist /agree_dist; intros ? *.
    + reflexivity.
    + by symmetry.
    + intros. etrans; eassumption.
  - intros ???. apply list_setequiv_subrel=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
242
Qed.
243
244
Canonical Structure agreeC := OfeT (agree A) agree_ofe_mixin.

245
Program Instance agree_op : Op (agree A) := λ x y,
246
  {| agree_car := agree_car x;
Ralf Jung's avatar
Ralf Jung committed
247
     agree_with := agree_with x ++ agree_car y :: agree_with y |}.
Robbert Krebbers's avatar
Robbert Krebbers committed
248
Instance agree_pcore : PCore (agree A) := Some.
249

250
Instance: Comm () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
251
252
Proof. intros x y n. apply: list_setequiv_equiv. set_solver. Qed.

Ralf Jung's avatar
...    
Ralf Jung committed
253
Lemma agree_idemp (x : agree A) : x  x  x.
Ralf Jung's avatar
Ralf Jung committed
254
255
Proof. intros n. apply: list_setequiv_equiv. set_solver. Qed.

256
257
Instance:  n : nat, Proper (dist n ==> impl) (@validN (agree A) _ n).
Proof.
Ralf Jung's avatar
Ralf Jung committed
258
259
  intros n x y. rewrite /dist /validN /agree_dist /agree_validN.
  by intros ->.
260
Qed.
Ralf Jung's avatar
Ralf Jung committed
261
262
263
264
265
266
Instance:  n : nat, Proper (equiv ==> iff) (@validN (agree A) _ n).
Proof.
  intros n ???. assert (x {n} y) as Hxy by by apply equiv_dist.
  split; rewrite Hxy; done.
Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
267
268
Instance:  x : agree A, Proper (dist n ==> dist n) (op x).
Proof.
Ralf Jung's avatar
Ralf Jung committed
269
270
  intros n x y1 y2. rewrite /dist /agree_dist /agree_list /=. 
  rewrite !app_comm_cons. apply: list_setequiv_app.
Robbert Krebbers's avatar
Robbert Krebbers committed
271
Qed.
272
Instance: Proper (dist n ==> dist n ==> dist n) (@op (agree A) _).
273
Proof. by intros n x1 x2 Hx y1 y2 Hy; rewrite Hy !(comm _ _ y2) Hx. Qed.
274
Instance: Proper (() ==> () ==> ()) op := ne_proper_2 _.
275
Instance: Assoc () (@op (agree A) _).
Ralf Jung's avatar
Ralf Jung committed
276
Proof. intros x y z n. apply: list_setequiv_equiv. set_solver. Qed.
277

Robbert Krebbers's avatar
Robbert Krebbers committed
278
279
280
281
282
Lemma agree_included (x y : agree A) : x  y  y  x  y.
Proof.
  split; [|by intros ?; exists y].
  by intros [z Hz]; rewrite Hz assoc agree_idemp.
Qed.
Ralf Jung's avatar
Ralf Jung committed
283
284
285
286
287
288
289
290
291
292
293
294
Lemma agree_op_inv_inclN n x1 x2 : {n} (x1  x2)  agree_dist_incl n x1 x2.
Proof.
  rewrite /validN /= => /list_agrees_alt Hv a /elem_of_cons Ha. exists (agree_car x2).
  split; first by constructor. eapply Hv.
  - simpl. destruct Ha as [->|Ha]; set_solver.
  - simpl. set_solver+.
Qed.
Lemma agree_op_invN n (x1 x2 : agree A) : {n} (x1  x2)  x1 {n} x2.
Proof.
  intros Hxy. split; apply agree_op_inv_inclN; first done. by rewrite comm.
Qed.

295
296
297
Lemma agree_valid_includedN n (x y : agree A) : {n} y  x {n} y  x {n} y.
Proof.
  move=> Hval [z Hy]; move: Hval; rewrite Hy.
Ralf Jung's avatar
Ralf Jung committed
298
  by move=> /agree_op_invN->; rewrite agree_idemp.
299
300
Qed.

301
Definition agree_cmra_mixin : CMRAMixin (agree A).
Robbert Krebbers's avatar
Robbert Krebbers committed
302
Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
303
  apply cmra_total_mixin; try apply _ || by eauto.
Ralf Jung's avatar
Ralf Jung committed
304
305
306
307
308
309
  - move=>x. split.
    + move=>/list_agrees_alt Hx n. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist, Hx; done.
    + intros Hx. apply (list_agrees_alt _)=> a b Ha Hb.
      apply equiv_dist=>n. eapply (list_agrees_alt _); first (by apply Hx); done.
  - intros n x. apply (list_agrees_subrel _ _)=>??. apply dist_S.
Robbert Krebbers's avatar
Robbert Krebbers committed
310
  - intros x. apply agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
311
  - intros ??? Hl. apply: list_agrees_contains Hl. set_solver.
312
  - intros n x y1 y2 Hval Hx; exists x, x; simpl; split.
313
    + by rewrite agree_idemp.
Ralf Jung's avatar
Ralf Jung committed
314
    + by move: Hval; rewrite Hx; move=> /agree_op_invN->; rewrite agree_idemp.
Robbert Krebbers's avatar
Robbert Krebbers committed
315
Qed.
316
Canonical Structure agreeR : cmraT :=
317
  CMRAT (agree A) agree_ofe_mixin agree_cmra_mixin.
318

Robbert Krebbers's avatar
Robbert Krebbers committed
319
320
Global Instance agree_total : CMRATotal agreeR.
Proof. rewrite /CMRATotal; eauto. Qed.
321
Global Instance agree_persistent (x : agree A) : Persistent x.
Robbert Krebbers's avatar
Robbert Krebbers committed
322
Proof. by constructor. Qed.
323

Ralf Jung's avatar
Ralf Jung committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
Lemma agree_op_inv (x1 x2 : agree A) :  (x1  x2)  x1  x2.
Proof.
  intros ?. apply equiv_dist=>n. by apply agree_op_invN, cmra_valid_validN.
Qed.

Global Instance agree_discrete :
  Discrete A  CMRADiscrete agreeR.
Proof.
  intros HD. split.
  - intros x y Hxy n. eapply list_setequiv_subrel; last exact Hxy. clear -HD.
    intros x y ?. apply equiv_dist, HD. done.
  - rewrite /valid /cmra_valid /agree_valid /validN /cmra_validN /agree_validN /=.
    move=> x. apply (list_agrees_subrel _ _). clear -HD.
    intros x y. apply HD.
Qed.

Definition to_agree (x : A) : agree A :=
  {| agree_car := x; agree_with := [] |}.
342

Robbert Krebbers's avatar
Robbert Krebbers committed
343
Global Instance to_agree_ne n : Proper (dist n ==> dist n) to_agree.
Ralf Jung's avatar
Ralf Jung committed
344
345
346
347
Proof.
  intros x1 x2 Hx; rewrite /= /dist /agree_dist /=.
  exact: list_setequiv_singleton.
Qed.
348
Global Instance to_agree_proper : Proper (() ==> ()) to_agree := ne_proper _.
349

Ralf Jung's avatar
Ralf Jung committed
350
351
352
353
354
355
Global Instance to_agree_injN n : Inj (dist n) (dist n) (to_agree).
Proof. intros a b [Hxy%list_setincl_singleton_rev _]. done. Qed. 
Global Instance to_agree_inj : Inj () () (to_agree).
Proof.
  intros a b ?. apply equiv_dist=>n. apply to_agree_injN. by apply equiv_dist.
Qed.
356

357
Lemma to_agree_uninjN n (x : agree A) : {n} x   y : A, to_agree y {n} x.
358
Proof.
Ralf Jung's avatar
Ralf Jung committed
359
360
361
362
363
364
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+. done.
Qed.

365
366
367
368
369
370
371
372
373
374
Lemma to_agree_uninj (x : agree A) :  x   y : A, to_agree y  x.
Proof.
  intros Hl. exists (agree_car x). rewrite /dist /agree_dist /=.
  split.
  - apply: list_setincl_singleton_in. set_solver+.
  - apply (list_agrees_iff_setincl _); first set_solver+.
    eapply list_agrees_subrel; last exact: Hl; [apply _..|].
    intros ???. by apply equiv_dist.
Qed.

Ralf Jung's avatar
Ralf Jung committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
Lemma to_agree_included (a b : A) : to_agree a  to_agree b  a  b.
Proof.
  split.
  - intros (x & Heq). apply equiv_dist=>n. destruct (Heq n) as [_ Hincl].
    (* TODO: This could become a generic lemma about list_setincl. *)
    destruct (Hincl a) as (? & ->%elem_of_list_singleton & ?); first set_solver+.
    done.
  - intros Hab. rewrite Hab. eexists. symmetry. eapply agree_idemp.
Qed.

Lemma to_agree_comp_valid (a b : A) :  (to_agree a  to_agree b)  a  b.
Proof.
  split.
  - (* TODO: can this be derived from other stuff?  Otherwise, should probably become sth. generic about list_agrees. *)
    intros Hv. apply Hv; simpl; set_solver.
  - intros ->. rewrite agree_idemp. done.
391
Qed.
392
393

(** Internalized properties *)
394
Lemma agree_equivI {M} a b : to_agree a  to_agree b  (a  b : uPred M).
395
Proof.
Ralf Jung's avatar
Ralf Jung committed
396
397
398
  uPred.unseal. do 2 split.
  - intros Hx. exact: to_agree_injN.
  - intros Hx. exact: to_agree_ne.
399
Qed.
400
Lemma agree_validI {M} x y :  (x  y)  (x  y : uPred M).
Ralf Jung's avatar
Ralf Jung committed
401
Proof. uPred.unseal; split=> r n _ ?; by apply: agree_op_invN. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
402
403
End agree.

404
Arguments agreeC : clear implicits.
405
Arguments agreeR : clear implicits.
406

407
Program Definition agree_map {A B} (f : A  B) (x : agree A) : agree B :=
Ralf Jung's avatar
Ralf Jung committed
408
  {| agree_car := f (agree_car x); agree_with := f <$> (agree_with x) |}.
409
Lemma agree_map_id {A} (x : agree A) : agree_map id x = x.
Ralf Jung's avatar
Ralf Jung committed
410
Proof. rewrite /agree_map /= list_fmap_id. by destruct x. Qed.
411
412
Lemma agree_map_compose {A B C} (f : A  B) (g : B  C) (x : agree A) :
  agree_map (g  f) x = agree_map g (agree_map f x).
Ralf Jung's avatar
Ralf Jung committed
413
Proof. rewrite /agree_map /= list_fmap_compose. done. Qed.
414

Robbert Krebbers's avatar
Robbert Krebbers committed
415
Section agree_map.
416
  Context {A B : ofeT} (f : A  B) `{Hf:  n, Proper (dist n ==> dist n) f}.
Robbert Krebbers's avatar
Robbert Krebbers committed
417
  Instance agree_map_ne n : Proper (dist n ==> dist n) (agree_map f).
Ralf Jung's avatar
Ralf Jung committed
418
419
420
421
422
  Proof.
    intros x y Hxy.
    change (list_setequiv (dist n)(f <$> (agree_list x))(f <$> (agree_list y))).
    eapply list_setequiv_fmap; last exact Hxy. apply _. 
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
423
  Instance agree_map_proper : Proper (() ==> ()) (agree_map f) := ne_proper _.
Ralf Jung's avatar
Ralf Jung committed
424

425
426
  Lemma agree_map_ext (g : A  B) x :
    ( x, f x  g x)  agree_map f x  agree_map g x.
Ralf Jung's avatar
Ralf Jung committed
427
428
429
430
431
432
  Proof.
    intros Hfg n. apply: list_setequiv_ext.
    change (f <$> (agree_list x) {n} g <$> (agree_list x)).
    apply list_fmap_ext_ne=>y. by apply equiv_dist.
  Qed.

433
  Global Instance agree_map_monotone : CMRAMonotone (agree_map f).
Robbert Krebbers's avatar
Robbert Krebbers committed
434
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
435
    split; first apply _.
Ralf Jung's avatar
Ralf Jung committed
436
437
438
    - intros n x. rewrite /cmra_validN /validN /= /agree_validN /= => ?.
      change (list_agrees (dist n) (f <$> agree_list x)).
      eapply (list_agrees_fmap _ _ _); done.
Robbert Krebbers's avatar
Robbert Krebbers committed
439
    - intros x y; rewrite !agree_included=> ->.
Ralf Jung's avatar
Ralf Jung committed
440
441
      rewrite /equiv /agree_equiv /agree_map /agree_op /agree_list /=.
      rewrite !fmap_app=>n. apply: list_setequiv_equiv. set_solver+.
Robbert Krebbers's avatar
Robbert Krebbers committed
442
443
  Qed.
End agree_map.
Robbert Krebbers's avatar
Robbert Krebbers committed
444

445
446
447
Definition agreeC_map {A B} (f : A -n> B) : agreeC A -n> agreeC B :=
  CofeMor (agree_map f : agreeC A  agreeC B).
Instance agreeC_map_ne A B n : Proper (dist n ==> dist n) (@agreeC_map A B).
Robbert Krebbers's avatar
Robbert Krebbers committed
448
Proof.
Ralf Jung's avatar
Ralf Jung committed
449
450
451
  intros f g Hfg x. apply: list_setequiv_ext.
  change (f <$> (agree_list x) {n} g <$> (agree_list x)).
  apply list_fmap_ext_ne. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
452
Qed.
Ralf Jung's avatar
Ralf Jung committed
453

454
455
456
457
Program Definition agreeRF (F : cFunctor) : rFunctor := {|
  rFunctor_car A B := agreeR (cFunctor_car F A B);
  rFunctor_map A1 A2 B1 B2 fg := agreeC_map (cFunctor_map F fg)
|}.
458
459
460
Next Obligation.
  intros ? A1 A2 B1 B2 n ???; simpl. by apply agreeC_map_ne, cFunctor_ne.
Qed.
461
462
463
464
465
466
467
468
Next Obligation.
  intros F A B x; simpl. rewrite -{2}(agree_map_id x).
  apply agree_map_ext=>y. by rewrite cFunctor_id.
Qed.
Next Obligation.
  intros F A1 A2 A3 B1 B2 B3 f g f' g' x; simpl. rewrite -agree_map_compose.
  apply agree_map_ext=>y; apply cFunctor_compose.
Qed.
469
470
471
472
473
474
475

Instance agreeRF_contractive F :
  cFunctorContractive F  rFunctorContractive (agreeRF F).
Proof.
  intros ? A1 A2 B1 B2 n ???; simpl.
  by apply agreeC_map_ne, cFunctor_contractive.
Qed.