heap_lang.v 10.8 KB
Newer Older
1
Require Export Autosubst.Autosubst.
2
3
Require Export iris.language.
Require Import prelude.gmap.
4

5
6
Module heap_lang.
(** Expressions and vals. *)
7
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
8

Ralf Jung's avatar
Ralf Jung committed
9
Inductive expr :=
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  (* Base lambda calculus *)
  | Var (x : var)
  | Rec (e : {bind 2 of expr}) (* These are recursive lambdas.
                                  The *inner* binder is the recursive call! *)
  | App (e1 e2 : expr)
  (* Natural numbers *)
  | LitNat (n : nat)
  | Plus (e1 e2 : expr)
  | Le (e1 e2 : expr)
  (* Unit *)
  | LitUnit
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : {bind expr}) (e2 : {bind expr})
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | Cas (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
37
38
39
40
41
42

Instance Ids_expr : Ids expr. derive. Defined.
Instance Rename_expr : Rename expr. derive. Defined.
Instance Subst_expr : Subst expr. derive. Defined.
Instance SubstLemmas_expr : SubstLemmas expr. derive. Qed.

43
44
45
46
47
48
49
50
51
52
53
54
55
56
(* This sugar is used by primitive reduction riles (<=, CAS) and hence
defined here. *)
Notation LitTrue := (InjL LitUnit).
Notation LitFalse := (InjR LitUnit).

Inductive val :=
  | RecV (e : {bind 2 of expr}) (* These are recursive lambdas.
                                   The *inner* binder is the recursive call! *)
  | LitNatV (n : nat)
  | LitUnitV
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
57

Ralf Jung's avatar
Ralf Jung committed
58
59
Definition LitTrueV := InjLV LitUnitV.
Definition LitFalseV := InjRV LitUnitV.
Ralf Jung's avatar
Ralf Jung committed
60

61
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
62
  match v with
63
  | RecV e => Rec e
64
65
  | LitNatV n => LitNat n
  | LitUnitV => LitUnit
66
67
68
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
69
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
70
  end.
71
Fixpoint to_val (e : expr) : option val :=
72
  match e with
Ralf Jung's avatar
Ralf Jung committed
73
  | Rec e => Some (RecV e)
74
75
  | LitNat n => Some (LitNatV n)
  | LitUnit => Some LitUnitV
76
77
78
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
79
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
80
  | _ => None
81
82
  end.

83
84
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
85

86
(** Evaluation contexts *)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
  | PlusLCtx (e2 : expr)
  | PlusRCtx (v1 : val)
  | LeLCtx (e2 : expr)
  | LeRCtx (v1 : val)
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
  | CaseCtx (e1 : {bind expr}) (e2 : {bind expr})
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val)
  | CasLCtx (e1 : expr)  (e2 : expr)
  | CasMCtx (v0 : val) (e2 : expr)
  | CasRCtx (v0 : val) (v1 : val).
108

109
Notation ectx := (list ectx_item).
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
Implicit Types Ki : ectx_item.
Implicit Types K : ectx.

Definition ectx_item_fill (Ki : ectx_item) (e : expr) : expr :=
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
  | PlusLCtx e2 => Plus e e2
  | PlusRCtx v1 => Plus (of_val v1) e
  | LeLCtx e2 => Le e e2
  | LeRCtx v1 => Le (of_val v1) e
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
  | CaseCtx e1 e2 => Case e e1 e2
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
136
  end.
137

138
Fixpoint fill K e :=
Ralf Jung's avatar
Ralf Jung committed
139
140
141
  (* FIXME RJ: This really is fold_left, but if I use that all automation breaks:
       fold_left (fun e Ki => ectx_item_fill Ki e).
     Or maybe we even have a combinator somewhere to swap the arguments? *)
142
  match K with [] => e | Ki :: K => ectx_item_fill Ki (fill K e) end.
Ralf Jung's avatar
Ralf Jung committed
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
(** The stepping relation *)
Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
  | BetaS e1 e2 v2 σ :
     to_val e2 = Some v2 
     head_step (App (Rec e1) e2) σ e1.[(Rec e1),e2/] σ None
  | PlusS n1 n2 σ:
     head_step (Plus (LitNat n1) (LitNat n2)) σ (LitNat (n1 + n2)) σ None
  | LeTrueS n1 n2 σ :
     n1  n2 
     head_step (Le (LitNat n1) (LitNat n2)) σ LitTrue σ None
  | LeFalseS n1 n2 σ :
     n1 > n2 
     head_step (Le (LitNat n1) (LitNat n2)) σ LitFalse σ None
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
  | CaseLS e0 v0 e1 e2 σ :
     to_val e0 = Some v0 
     head_step (Case (InjL e0) e1 e2) σ e1.[e0/] σ None
  | CaseRS e0 v0 e1 e2 σ :
     to_val e0 = Some v0 
     head_step (Case (InjR e0) e1 e2) σ e2.[e0/] σ None
  | ForkS e σ:
     head_step (Fork e) σ LitUnit σ (Some e)
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
     head_step (Store (Loc l) e) σ LitUnit (<[l:=v]>σ) None
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
     head_step (Cas (Loc l) e1 e2) σ LitFalse σ None
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
     head_step (Cas (Loc l) e1 e2) σ LitTrue (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
188

189
190
191
192
193
194
195
196
197
(** Atomic expressions *)
Definition atomic (e: expr) :=
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
  | _ => False
  end.
198

199
200
201
202
203
204
205
206
207
208
209
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
Inductive prim_step
    (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
  Ectx_step (K : ectx) e1' e2' :
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof. by induction v; simplify_option_equality. Qed.
210

211
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
212
Proof.
213
  revert v; induction e; intros; simplify_option_equality; auto with f_equal.
214
Qed.
215

216
217
Instance: Injective (=) (=) of_val.
Proof. by intros ?? Hv; apply (injective Some); rewrite -!to_of_val Hv. Qed.
218

219
220
Instance ectx_item_fill_inj Ki : Injective (=) (=) (ectx_item_fill Ki).
Proof. destruct Ki; intros ???; simplify_equality'; auto with f_equal. Qed.
221

222
223
Instance ectx_fill_inj K : Injective (=) (=) (fill K).
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
224

225
226
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
227

228
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
229
Proof.
230
231
  intros [v' Hv']; revert v' Hv'.
  induction K as [|[]]; intros; simplify_option_equality; eauto.
232
Qed.
233

234
235
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
236

237
238
239
Lemma values_head_stuck e1 σ1 e2 σ2 ef :
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
240

241
242
Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.
243

244
245
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
246

247
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
248
Proof.
249
250
  rewrite eq_None_not_Some.
  destruct K as [|[]]; naive_solver eauto using fill_val.
251
Qed.
252

253
254
255
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Proof. destruct 2; simpl; rewrite ?to_of_val; naive_solver. Qed.
256

257
258
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
259
Proof.
260
261
262
  intros Hatomic [K e1' e2' -> -> Hstep].
  assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
263
Qed.
264

265
266
267
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
  head_step (ectx_item_fill Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
Proof. destruct Ki; inversion_clear 1; simplify_option_equality; eauto. Qed.
268

269
270
271
Lemma fill_item_inj Ki1 Ki2 e1 e2 :
  to_val e1 = None  to_val e2 = None 
  ectx_item_fill Ki1 e1 = ectx_item_fill Ki2 e2  Ki1 = Ki2.
272
Proof.
273
274
275
276
  destruct Ki1, Ki2; intros; try discriminate; simplify_equality';
    repeat match goal with
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
277
Qed.
278

279
280
281
282
283
284
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
285
Proof.
286
287
288
289
290
291
292
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
  destruct K' as [|Ki' K']; simplify_equality'.
  { destruct (proj1 (eq_None_not_Some (to_val (fill K e1))));
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
  eauto using fill_item_inj, values_head_stuck, fill_not_val.
293
Qed.
294

295
296
297
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
298
Proof.
299
  by intros; apply AllocS, (not_elem_of_dom (D:=gset positive)), is_fresh.
300
Qed.
301

302
303
304
305
306
307
308
309
310
311
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
  expr := heap_lang.expr; val := heap_lang.val; state := heap_lang.state;
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
  heap_lang.values_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
312
313
314

Global Instance heap_lang_ctx K :
  LanguageCtx heap_lang (heap_lang.fill K).
315
Proof.
316
317
  split.
  * eauto using heap_lang.fill_not_val.
318
  * intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
319
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
320
  * intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
321
322
323
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
    rewrite heap_lang.fill_app in Heq1; apply (injective _) in Heq1.
Ralf Jung's avatar
Ralf Jung committed
324
    exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
325
    econstructor; eauto.
326
Qed.