lifting.v 5.9 KB
Newer Older
1
2
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import ownership ectx_lifting. (* for ownP *)
3
From iris.heap_lang Require Export lang.
4
From iris.heap_lang Require Import tactics.
5
From iris.proofmode Require Import weakestpre.
6
Import uPred.
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Local Hint Extern 0 (head_reducible _ _) => do_head_step eauto 2.
8

9
Section lifting.
10
Context {Σ : iFunctor}.
11
12
Implicit Types P Q : iProp heap_lang Σ.
Implicit Types Φ : val  iProp heap_lang Σ.
13
Implicit Types ef : option (expr []).
Ralf Jung's avatar
Ralf Jung committed
14

15
(** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *)
16
Lemma wp_bind {E e} K Φ :
17
  WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }}  WP fill K e @ E {{ Φ }}.
18
Proof. exact: wp_ectx_bind. Qed.
Ralf Jung's avatar
Ralf Jung committed
19

20
Lemma wp_bindi {E e} Ki Φ :
21
  WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} 
22
23
24
     WP fill_item Ki e @ E {{ Φ }}.
Proof. exact: weakestpre.wp_bind. Qed.

25
(** Base axioms for core primitives of the language: Stateful reductions. *)
26
Lemma wp_alloc_pst E σ e v Φ :
27
  to_val e = Some v 
28
  ( ownP σ   ( l, σ !! l = None  ownP (<[l:=v]>σ) - Φ (LitV (LitLoc l))))
29
   WP Alloc e @ E {{ Φ }}.
30
Proof.
Ralf Jung's avatar
Ralf Jung committed
31
  iIntros {?}  "[HP HΦ]".
Ralf Jung's avatar
Ralf Jung committed
32
  (* TODO: This works around ssreflect bug #22. *)
Ralf Jung's avatar
Ralf Jung committed
33
  set (φ (e' : expr []) σ' ef :=  l,
34
    ef = None  e' = Lit (LitLoc l)  σ' = <[l:=v]>σ  σ !! l = None).
Ralf Jung's avatar
Ralf Jung committed
35
36
  iApply (wp_lift_atomic_head_step (Alloc e) φ σ); try (by simpl; eauto);
    [by intros; subst φ; inv_head_step; eauto 8|].
37
38
  iFrame "HP". iNext. iIntros {v2 σ2 ef} "[Hφ HP]".
  iDestruct "Hφ" as %(l & -> & [= <-]%of_to_val_flip & -> & ?); simpl.
Robbert Krebbers's avatar
Robbert Krebbers committed
39
  iSplit; last done. iApply "HΦ"; by iSplit.
40
Qed.
41

42
Lemma wp_load_pst E σ l v Φ :
Ralf Jung's avatar
Ralf Jung committed
43
  σ !! l = Some v 
44
  ( ownP σ   (ownP σ - Φ v))  WP Load (Lit (LitLoc l)) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
45
Proof.
46
  intros. rewrite -(wp_lift_atomic_det_head_step σ v σ None) ?right_id //;
Robbert Krebbers's avatar
Robbert Krebbers committed
47
    last (by intros; inv_head_step; eauto using to_of_val); simpl; by eauto.
Ralf Jung's avatar
Ralf Jung committed
48
Qed.
49

50
Lemma wp_store_pst E σ l e v v' Φ :
51
  to_val e = Some v  σ !! l = Some v' 
52
  ( ownP σ   (ownP (<[l:=v]>σ) - Φ (LitV LitUnit)))
53
   WP Store (Lit (LitLoc l)) e @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
54
Proof.
55
  intros. rewrite-(wp_lift_atomic_det_head_step σ (LitV LitUnit) (<[l:=v]>σ) None)
Robbert Krebbers's avatar
Robbert Krebbers committed
56
    ?right_id //; last (by intros; inv_head_step; eauto); simpl; by eauto.
Ralf Jung's avatar
Ralf Jung committed
57
Qed.
58

59
Lemma wp_cas_fail_pst E σ l e1 v1 e2 v2 v' Φ :
60
  to_val e1 = Some v1  to_val e2 = Some v2  σ !! l = Some v'  v'  v1 
61
  ( ownP σ   (ownP σ - Φ (LitV $ LitBool false)))
62
   WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
63
Proof.
64
  intros. rewrite -(wp_lift_atomic_det_head_step σ (LitV $ LitBool false) σ None)
Robbert Krebbers's avatar
Robbert Krebbers committed
65
    ?right_id //; last (by intros; inv_head_step; eauto);
66
    simpl; by eauto 10.
Ralf Jung's avatar
Ralf Jung committed
67
Qed.
68

69
Lemma wp_cas_suc_pst E σ l e1 v1 e2 v2 Φ :
70
  to_val e1 = Some v1  to_val e2 = Some v2  σ !! l = Some v1 
71
  ( ownP σ   (ownP (<[l:=v2]>σ) - Φ (LitV $ LitBool true)))
72
   WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
73
Proof.
74
  intros. rewrite -(wp_lift_atomic_det_head_step σ (LitV $ LitBool true)
Robbert Krebbers's avatar
Robbert Krebbers committed
75
    (<[l:=v2]>σ) None) ?right_id //; last (by intros; inv_head_step; eauto);
76
    simpl; by eauto 10.
Ralf Jung's avatar
Ralf Jung committed
77
78
Qed.

79
(** Base axioms for core primitives of the language: Stateless reductions *)
80
Lemma wp_fork E e Φ :
81
  ( Φ (LitV LitUnit)   WP e {{ _, True }})  WP Fork e @ E {{ Φ }}.
82
Proof.
83
  rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) (Some e)) //=;
Robbert Krebbers's avatar
Robbert Krebbers committed
84
    last by intros; inv_head_step; eauto.
85
  rewrite later_sep -(wp_value _ _ (Lit _)) //.
86
Qed.
87

88
Lemma wp_rec E f x erec e1 e2 v2 Φ :
89
  e1 = Rec f x erec 
90
  to_val e2 = Some v2 
91
92
   WP subst' x e2 (subst' f e1 erec) @ E {{ Φ }}
   WP App e1 e2 @ E {{ Φ }}.
93
94
95
96
97
Proof.
  intros -> ?. rewrite -(wp_lift_pure_det_head_step (App _ _)
    (subst' x e2 (subst' f (Rec f x erec) erec)) None) //= ?right_id;
    intros; inv_head_step; eauto.
Qed.
98

99
Lemma wp_un_op E op l l' Φ :
100
  un_op_eval op l = Some l' 
101
   Φ (LitV l')  WP UnOp op (Lit l) @ E {{ Φ }}.
102
Proof.
103
  intros. rewrite -(wp_lift_pure_det_head_step (UnOp op _) (Lit l') None)
Robbert Krebbers's avatar
Robbert Krebbers committed
104
    ?right_id -?wp_value //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
105
Qed.
106

107
Lemma wp_bin_op E op l1 l2 l' Φ :
108
  bin_op_eval op l1 l2 = Some l' 
109
   Φ (LitV l')  WP BinOp op (Lit l1) (Lit l2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
110
Proof.
111
  intros Heval. rewrite -(wp_lift_pure_det_head_step (BinOp op _ _) (Lit l') None)
Robbert Krebbers's avatar
Robbert Krebbers committed
112
    ?right_id -?wp_value //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
113
Qed.
114

115
Lemma wp_if_true E e1 e2 Φ :
116
   WP e1 @ E {{ Φ }}  WP If (Lit (LitBool true)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
117
Proof.
118
  rewrite -(wp_lift_pure_det_head_step (If _ _ _) e1 None)
Robbert Krebbers's avatar
Robbert Krebbers committed
119
    ?right_id //; intros; inv_head_step; eauto.
120
121
Qed.

122
Lemma wp_if_false E e1 e2 Φ :
123
   WP e2 @ E {{ Φ }}  WP If (Lit (LitBool false)) e1 e2 @ E {{ Φ }}.
124
Proof.
125
  rewrite -(wp_lift_pure_det_head_step (If _ _ _) e2 None)
Robbert Krebbers's avatar
Robbert Krebbers committed
126
    ?right_id //; intros; inv_head_step; eauto.
127
Qed.
128

129
Lemma wp_fst E e1 v1 e2 v2 Φ :
130
  to_val e1 = Some v1  to_val e2 = Some v2 
131
   Φ v1  WP Fst (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
132
Proof.
133
  intros. rewrite -(wp_lift_pure_det_head_step (Fst _) e1 None)
Robbert Krebbers's avatar
Robbert Krebbers committed
134
    ?right_id -?wp_value //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
135
Qed.
136

137
Lemma wp_snd E e1 v1 e2 v2 Φ :
138
  to_val e1 = Some v1  to_val e2 = Some v2 
139
   Φ v2  WP Snd (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
140
Proof.
141
  intros. rewrite -(wp_lift_pure_det_head_step (Snd _) e2 None)
Robbert Krebbers's avatar
Robbert Krebbers committed
142
    ?right_id -?wp_value //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
143
Qed.
144

145
Lemma wp_case_inl E e0 v0 e1 e2 Φ :
146
  to_val e0 = Some v0 
147
   WP App e1 e0 @ E {{ Φ }}  WP Case (InjL e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
148
Proof.
149
  intros. rewrite -(wp_lift_pure_det_head_step (Case _ _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
150
    (App e1 e0) None) ?right_id //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
151
Qed.
152

153
Lemma wp_case_inr E e0 v0 e1 e2 Φ :
154
  to_val e0 = Some v0 
155
   WP App e2 e0 @ E {{ Φ }}  WP Case (InjR e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
156
Proof.
157
  intros. rewrite -(wp_lift_pure_det_head_step (Case _ _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
158
    (App e2 e0) None) ?right_id //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
159
Qed.
160
End lifting.