big_op.v 66.8 KB
Newer Older
Robbert Krebbers's avatar
Robbert Krebbers committed
1
From iris.algebra Require Export big_op.
2
From iris.bi Require Import derived_laws_sbi plainly.
Robbert Krebbers's avatar
Robbert Krebbers committed
3
From stdpp Require Import countable fin_sets functions.
4
Set Default Proof Using "Type".
Robbert Krebbers's avatar
Robbert Krebbers committed
5
Import interface.bi derived_laws_bi.bi derived_laws_sbi.bi.
6

Dan Frumin's avatar
Dan Frumin committed
7
(** Notations for unary variants *)
Ralf Jung's avatar
Ralf Jung committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Notation "'[∗' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_sep (λ k x, P) l) : bi_scope.
Notation "'[∗' 'list]' x ∈ l , P" :=
  (big_opL bi_sep (λ _ x, P) l) : bi_scope.

Notation "'[∗]' Ps" := (big_opL bi_sep (λ _ x, x) Ps) : bi_scope.

Notation "'[∧' 'list]' k ↦ x ∈ l , P" :=
  (big_opL bi_and (λ k x, P) l) : bi_scope.
Notation "'[∧' 'list]' x ∈ l , P" :=
  (big_opL bi_and (λ _ x, P) l) : bi_scope.

Notation "'[∧]' Ps" := (big_opL bi_and (λ _ x, x) Ps) : bi_scope.

Notation "'[∗' 'map]' k ↦ x ∈ m , P" := (big_opM bi_sep (λ k x, P) m) : bi_scope.
Notation "'[∗' 'map]' x ∈ m , P" := (big_opM bi_sep (λ _ x, P) m) : bi_scope.

Notation "'[∗' 'set]' x ∈ X , P" := (big_opS bi_sep (λ x, P) X) : bi_scope.

Notation "'[∗' 'mset]' x ∈ X , P" := (big_opMS bi_sep (λ x, P) X) : bi_scope.
28

Dan Frumin's avatar
Dan Frumin committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
(** Definitions and notations for binary variants *)
(** A version of the separating big operator that ranges over two lists. This
version also ensures that both lists have the same length. Although this version
can be defined in terms of the unary using a [zip] (see [big_sepL2_alt]), we do
not define it that way to get better computational behavior (for [simpl]). *)
Fixpoint big_sepL2 {PROP : bi} {A B}
    (Φ : nat  A  B  PROP) (l1 : list A) (l2 : list B) : PROP :=
  match l1, l2 with
  | [], [] => emp
  | x1 :: l1, x2 :: l2 => Φ 0 x1 x2  big_sepL2 (λ n, Φ (S n)) l1 l2
  | _, _ => False
  end%I.
Instance: Params (@big_sepL2) 3 := {}.
Arguments big_sepL2 {PROP A B} _ !_ !_ /.
Typeclasses Opaque big_sepL2.
Notation "'[∗' 'list]' k ↦ x1 ; x2 ∈ l1 ; l2 , P" :=
  (big_sepL2 (λ k x1 x2, P) l1 l2) : bi_scope.
Notation "'[∗' 'list]' x1 ; x2 ∈ l1 ; l2 , P" :=
  (big_sepL2 (λ _ x1 x2, P) l1 l2) : bi_scope.

Definition big_sepM2 {PROP : bi} `{Countable K} {A B}
    (Φ : K  A  B  PROP) (m1 : gmap K A) (m2 : gmap K B) : PROP :=
  (  k, is_Some (m1 !! k)  is_Some (m2 !! k)  
   [ map] k  xy  map_zip m1 m2, Φ k xy.1 xy.2)%I.
Instance: Params (@big_sepM2) 6 := {}.
Typeclasses Opaque big_sepM2.
Notation "'[∗' 'map]' k ↦ x1 ; x2 ∈ m1 ; m2 , P" :=
  (big_sepM2 (λ k x1 x2, P) m1 m2) : bi_scope.
Notation "'[∗' 'map]' x1 ; x2 ∈ m1 ; m2 , P" :=
  (big_sepM2 (λ _ x1 x2, P) m1 m2) : bi_scope.

60
(** * Properties *)
Robbert Krebbers's avatar
Robbert Krebbers committed
61
62
Section bi_big_op.
Context {PROP : bi}.
63
Implicit Types P Q : PROP.
Robbert Krebbers's avatar
Robbert Krebbers committed
64
Implicit Types Ps Qs : list PROP.
65
66
Implicit Types A : Type.

67
(** ** Big ops over lists *)
68
Section sep_list.
69
70
  Context {A : Type}.
  Implicit Types l : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
71
  Implicit Types Φ Ψ : nat  A  PROP.
72

Robbert Krebbers's avatar
Robbert Krebbers committed
73
  Lemma big_sepL_nil Φ : ([ list] ky  nil, Φ k y)  emp.
74
  Proof. done. Qed.
75
  Lemma big_sepL_nil' `{BiAffine PROP} P Φ : P  [ list] ky  nil, Φ k y.
Robbert Krebbers's avatar
Robbert Krebbers committed
76
  Proof. apply (affine _). Qed.
77
  Lemma big_sepL_cons Φ x l :
78
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
79
  Proof. by rewrite big_opL_cons. Qed.
80
  Lemma big_sepL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
81
82
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_sepL_app Φ l1 l2 :
83
84
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
85
86
  Proof. by rewrite big_opL_app. Qed.

87
88
  Lemma big_sepL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
89
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
90
  Proof. apply big_opL_forall; apply _. Qed.
91
92
  Lemma big_sepL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
93
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
94
  Proof. apply big_opL_proper. Qed.
95
  Lemma big_sepL_submseteq `{BiAffine PROP} (Φ : A  PROP) l1 l2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
96
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
Robbert Krebbers's avatar
Robbert Krebbers committed
97
98
99
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_sepL_app sep_elim_l.
  Qed.
100

101
102
  Global Instance big_sepL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
103
           (big_opL (@bi_sep PROP) (A:=A)).
104
  Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
105
  Global Instance big_sepL_id_mono' :
106
    Proper (Forall2 () ==> ()) (big_opL (@bi_sep PROP) (λ _ P, P)).
107
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.
108

109
  Lemma big_sepL_emp l : ([ list] ky  l, emp) @{PROP} emp.
Robbert Krebbers's avatar
Robbert Krebbers committed
110
111
  Proof. by rewrite big_opL_unit. Qed.

112
113
114
115
  Lemma big_sepL_lookup_acc Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  (Φ i x - ([ list] ky  l, Φ k y)).
  Proof.
116
117
118
    intros Hli. rewrite -(take_drop_middle l i x) // big_sepL_app /=.
    rewrite Nat.add_0_r take_length_le; eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. by apply sep_mono_r, wand_intro_l.
119
120
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
121
  Lemma big_sepL_lookup Φ l i x `{!Absorbing (Φ i x)} :
122
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
123
  Proof. intros. rewrite big_sepL_lookup_acc //. by rewrite sep_elim_l. Qed.
124

Robbert Krebbers's avatar
Robbert Krebbers committed
125
  Lemma big_sepL_elem_of (Φ : A  PROP) l x `{!Absorbing (Φ x)} :
126
    x  l  ([ list] y  l, Φ y)  Φ x.
127
128
129
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_sepL_lookup (λ _, Φ)).
  Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
130

Robbert Krebbers's avatar
Robbert Krebbers committed
131
  Lemma big_sepL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
132
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
133
  Proof. by rewrite big_opL_fmap. Qed.
134
135

  Lemma big_sepL_sepL Φ Ψ l :
136
137
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
138
  Proof. by rewrite big_opL_opL. Qed.
139

140
141
142
  Lemma big_sepL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
143
  Proof. auto using and_intro, big_sepL_mono, and_elim_l, and_elim_r. Qed.
Robbert Krebbers's avatar
Robbert Krebbers committed
144

145
  Lemma big_sepL_persistently `{BiAffine PROP} Φ l :
146
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
147
  Proof. apply (big_opL_commute _). Qed.
148

149
  Lemma big_sepL_forall `{BiAffine PROP} Φ l :
150
    ( k x, Persistent (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
151
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
152
153
154
  Proof.
    intros HΦ. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
Robbert Krebbers's avatar
Robbert Krebbers committed
155
156
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepL_lookup. }
    revert Φ HΦ. induction l as [|x l IH]=> Φ HΦ; [by auto using big_sepL_nil'|].
157
    rewrite big_sepL_cons. rewrite -persistent_and_sep; apply and_intro.
158
    - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
159
160
161
162
    - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Lemma big_sepL_impl Φ Ψ l :
Robbert Krebbers's avatar
Robbert Krebbers committed
163
    ([ list] kx  l, Φ k x) -
164
     ( k x, l !! k = Some x  Φ k x - Ψ k x) -
Robbert Krebbers's avatar
Robbert Krebbers committed
165
    [ list] kx  l, Ψ k x.
166
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
167
168
    apply wand_intro_l. revert Φ Ψ. induction l as [|x l IH]=> Φ Ψ /=.
    { by rewrite sep_elim_r. }
169
    rewrite intuitionistically_sep_dup -assoc [( _  _)%I]comm -!assoc assoc.
Robbert Krebbers's avatar
Robbert Krebbers committed
170
171
    apply sep_mono.
    - rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
172
      by rewrite intuitionistically_elim wand_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
173
    - rewrite comm -(IH (Φ  S) (Ψ  S)) /=.
174
      apply sep_mono_l, affinely_mono, persistently_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
175
      apply forall_intro=> k. by rewrite (forall_elim (S k)).
176
177
  Qed.

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  Lemma big_sepL_delete Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)
     Φ i x  [ list] ky  l, if decide (k = i) then emp else Φ k y.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // !big_sepL_app /= Nat.add_0_r.
    rewrite take_length_le; last eauto using lookup_lt_Some, Nat.lt_le_incl.
    rewrite decide_True // left_id.
    rewrite assoc -!(comm _ (Φ _ _)) -assoc. do 2 f_equiv.
    - apply big_sepL_proper=> k y Hk. apply lookup_lt_Some in Hk.
      rewrite take_length in Hk. by rewrite decide_False; last lia.
    - apply big_sepL_proper=> k y _. by rewrite decide_False; last lia.
  Qed.

  Lemma big_sepL_delete' `{!BiAffine PROP} Φ l i x :
    l !! i = Some x 
    ([ list] ky  l, Φ k y)  Φ i x  [ list] ky  l,  k  i   Φ k y.
  Proof.
    intros. rewrite big_sepL_delete //. (do 2 f_equiv)=> k y.
    rewrite -decide_emp. by repeat case_decide.
  Qed.

200
201
202
203
  Lemma big_sepL_replicate l P :
    [] replicate (length l) P  [ list] y  l, P.
  Proof. induction l as [|x l]=> //=; by f_equiv. Qed.

204
  Global Instance big_sepL_nil_persistent Φ :
205
    Persistent ([ list] kx  [], Φ k x).
206
  Proof. simpl; apply _. Qed.
207
  Global Instance big_sepL_persistent Φ l :
208
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
209
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
210
  Global Instance big_sepL_persistent_id Ps :
211
    TCForall Persistent Ps  Persistent ([] Ps).
212
  Proof. induction 1; simpl; apply _. Qed.
213

214
215
216
  Global Instance big_sepL_nil_affine Φ :
    Affine ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
217
218
219
  Global Instance big_sepL_affine Φ l :
    ( k x, Affine (Φ k x))  Affine ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
220
221
  Global Instance big_sepL_affine_id Ps : TCForall Affine Ps  Affine ([] Ps).
  Proof. induction 1; simpl; apply _. Qed.
222
End sep_list.
223

224
Section sep_list_more.
225
226
  Context {A : Type}.
  Implicit Types l : list A.
Robbert Krebbers's avatar
Robbert Krebbers committed
227
  Implicit Types Φ Ψ : nat  A  PROP.
228
229
230
  (* Some lemmas depend on the generalized versions of the above ones. *)

  Lemma big_sepL_zip_with {B C} Φ f (l1 : list B) (l2 : list C) :
Robbert Krebbers's avatar
Robbert Krebbers committed
231
    ([ list] kx  zip_with f l1 l2, Φ k x)
Robbert Krebbers's avatar
Robbert Krebbers committed
232
     ([ list] kx  l1, if l2 !! k is Some y then Φ k (f x y) else emp).
233
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
234
235
236
    revert Φ l2; induction l1 as [|x l1 IH]=> Φ [|y l2] //=.
    - by rewrite big_sepL_emp left_id.
    - by rewrite IH.
237
  Qed.
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
End sep_list_more.

Lemma big_sepL2_alt {A B} (Φ : nat  A  B  PROP) l1 l2 :
  ([ list] ky1;y2  l1; l2, Φ k y1 y2)
    length l1 = length l2   [ list] k  y  zip l1 l2, Φ k (y.1) (y.2).
Proof.
  apply (anti_symm _).
  - apply and_intro.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      rewrite IH sep_elim_r. apply pure_mono; auto.
    + revert Φ l2. induction l1 as [|x1 l1 IH]=> Φ -[|x2 l2] /=;
        auto using pure_intro, False_elim.
      by rewrite IH.
  - apply pure_elim_l=> /Forall2_same_length Hl. revert Φ.
    induction Hl as [|x1 l1 x2 l2 _ _ IH]=> Φ //=. by rewrite -IH.
Qed.

(** ** Big ops over two lists *)
Section sep_list2.
  Context {A B : Type}.
  Implicit Types Φ Ψ : nat  A  B  PROP.

  Lemma big_sepL2_nil Φ : ([ list] ky1;y2  []; [], Φ k y1 y2)  emp.
  Proof. done. Qed.
  Lemma big_sepL2_nil' `{BiAffine PROP} P Φ : P  [ list] ky1;y2  [];[], Φ k y1 y2.
  Proof. apply (affine _). Qed.

  Lemma big_sepL2_cons Φ x1 x2 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; x2 :: l2, Φ k y1 y2)
     Φ 0 x1 x2  [ list] ky1;y2  l1;l2, Φ (S k) y1 y2.
  Proof. done. Qed.
  Lemma big_sepL2_cons_inv_l Φ x1 l1 l2 :
    ([ list] ky1;y2  x1 :: l1; l2, Φ k y1 y2) -
     x2 l2',  l2 = x2 :: l2'  
              Φ 0 x1 x2  [ list] ky1;y2  l1;l2', Φ (S k) y1 y2.
  Proof.
    destruct l2 as [|x2 l2]; simpl; auto using False_elim.
    by rewrite -(exist_intro x2) -(exist_intro l2) pure_True // left_id.
  Qed.
  Lemma big_sepL2_cons_inv_r Φ x2 l1 l2 :
    ([ list] ky1;y2  l1; x2 :: l2, Φ k y1 y2) -
     x1 l1',  l1 = x1 :: l1'  
              Φ 0 x1 x2  [ list] ky1;y2  l1';l2, Φ (S k) y1 y2.
  Proof.
    destruct l1 as [|x1 l1]; simpl; auto using False_elim.
    by rewrite -(exist_intro x1) -(exist_intro l1) pure_True // left_id.
  Qed.

  Lemma big_sepL2_singleton Φ x1 x2 :
    ([ list] ky1;y2  [x1];[x2], Φ k y1 y2)  Φ 0 x1 x2.
  Proof. by rewrite /= right_id. Qed.

  Lemma big_sepL2_length Φ l1 l2 :
    ([ list] ky1;y2  l1; l2, Φ k y1 y2) -  length l1 = length l2 .
  Proof. by rewrite big_sepL2_alt and_elim_l. Qed.

  Lemma big_sepL2_app Φ l1 l2 l1' l2' :
    ([ list] ky1;y2  l1; l1', Φ k y1 y2) -
    ([ list] ky1;y2  l2; l2', Φ (length l1 + k) y1 y2) -
    ([ list] ky1;y2  l1 ++ l2; l1' ++ l2', Φ k y1 y2).
  Proof.
    apply wand_intro_r. revert Φ l1'. induction l1 as [|x1 l1 IH]=> Φ -[|x1' l1'] /=.
    - by rewrite left_id.
    - rewrite left_absorb. apply False_elim.
    - rewrite left_absorb. apply False_elim.
    - by rewrite -assoc IH.
  Qed.
  Lemma big_sepL2_app_inv_l Φ l1' l1'' l2 :
    ([ list] ky1;y2  l1' ++ l1''; l2, Φ k y1 y2) -
     l2' l2'',  l2 = l2' ++ l2''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l1' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l1') l2))
      -(exist_intro (drop (length l1') l2)) take_drop pure_True // left_id.
    revert Φ l2. induction l1' as [|x1 l1' IH]=> Φ -[|x2 l2] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.
  Lemma big_sepL2_app_inv_r Φ l1 l2' l2'' :
    ([ list] ky1;y2  l1; l2' ++ l2'', Φ k y1 y2) -
     l1' l1'',  l1 = l1' ++ l1''  
                ([ list] ky1;y2  l1';l2', Φ k y1 y2) 
                ([ list] ky1;y2  l1'';l2'', Φ (length l2' + k) y1 y2).
  Proof.
    rewrite -(exist_intro (take (length l2') l1))
      -(exist_intro (drop (length l2') l1)) take_drop pure_True // left_id.
    revert Φ l1. induction l2' as [|x2 l2' IH]=> Φ -[|x1 l1] /=;
       [by rewrite left_id|by rewrite left_id|apply False_elim|].
    by rewrite IH -assoc.
  Qed.

  Lemma big_sepL2_mono Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros H. rewrite !big_sepL2_alt. f_equiv. apply big_sepL_mono=> k [y1 y2].
    rewrite lookup_zip_with=> ?; simplify_option_eq; auto.
  Qed.
  Lemma big_sepL2_proper Φ Ψ l1 l2 :
    ( k y1 y2, l1 !! k = Some y1  l2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ list] k  y1;y2  l1;l2, Φ k y1 y2)  [ list] k  y1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    intros; apply (anti_symm _);
      apply big_sepL2_mono; auto using equiv_entails, equiv_entails_sym.
  Qed.

  Global Instance big_sepL2_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n)))
      ==> (=) ==> (=) ==> (dist n))
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof.
    intros Φ1 Φ2 HΦ x1 ? <- x2 ? <-. rewrite !big_sepL2_alt. f_equiv.
    f_equiv=> k [y1 y2]. apply HΦ.
  Qed.
  Global Instance big_sepL2_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_mono; intros; apply Hf. Qed.
  Global Instance big_sepL2_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepL2 (PROP:=PROP) (A:=A) (B:=B)).
  Proof. intros f g Hf l1 ? <- l2 ? <-. apply big_sepL2_proper; intros; apply Hf. Qed.

  Lemma big_sepL2_lookup_acc Φ l1 l2 i x1 x2 :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) 
    Φ i x1 x2  (Φ i x1 x2 - ([ list] ky1;y2  l1;l2, Φ k y1 y2)).
  Proof.
    intros Hl1 Hl2. rewrite big_sepL2_alt. apply pure_elim_l=> Hl.
    rewrite {1}big_sepL_lookup_acc; last by rewrite lookup_zip_with; simplify_option_eq.
    by rewrite pure_True // left_id.
  Qed.

  Lemma big_sepL2_lookup Φ l1 l2 i x1 x2 `{!Absorbing (Φ i x1 x2)} :
    l1 !! i = Some x1  l2 !! i = Some x2 
    ([ list] ky1;y2  l1;l2, Φ k y1 y2)  Φ i x1 x2.
  Proof. intros. rewrite big_sepL2_lookup_acc //. by rewrite sep_elim_l. Qed.

  Lemma big_sepL2_fmap_l {A'} (f : A  A') (Φ : nat  A'  B  PROP) l1 l2 :
    ([ list] ky1;y2  f <$> l1; l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k (f y1) y2).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_l zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.
  Lemma big_sepL2_fmap_r {B'} (g : B  B') (Φ : nat  A  B'  PROP) l1 l2 :
    ([ list] ky1;y2  l1; g <$> l2, Φ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 (g y2)).
  Proof.
    rewrite !big_sepL2_alt fmap_length zip_with_fmap_r zip_with_zip big_sepL_fmap.
    by f_equiv; f_equiv=> k [??].
  Qed.

  Lemma big_sepL2_sepL2 Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof.
    rewrite !big_sepL2_alt big_sepL_sepL !persistent_and_affinely_sep_l.
    rewrite -assoc (assoc _ _ (<affine> _)%I). rewrite -(comm bi_sep (<affine> _)%I).
    rewrite -assoc (assoc _ _ (<affine> _)%I) -!persistent_and_affinely_sep_l.
    by rewrite affinely_and_r persistent_and_affinely_sep_l idemp.
  Qed.

  Lemma big_sepL2_and Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2  Ψ k y1 y2)
     ([ list] ky1;y2  l1;l2, Φ k y1 y2)  ([ list] ky1;y2  l1;l2, Ψ k y1 y2).
  Proof. auto using and_intro, big_sepL2_mono, and_elim_l, and_elim_r. Qed.

  Lemma big_sepL2_persistently `{BiAffine PROP} Φ l1 l2 :
    <pers> ([ list] ky1;y2  l1;l2, Φ k y1 y2)
     [ list] ky1;y2  l1;l2, <pers> (Φ k y1 y2).
  Proof.
    by rewrite !big_sepL2_alt persistently_and persistently_pure big_sepL_persistently.
  Qed.

  Lemma big_sepL2_impl Φ Ψ l1 l2 :
    ([ list] ky1;y2  l1;l2, Φ k y1 y2) -
     ( k x1 x2,
      l1 !! k = Some x1  l2 !! k = Some x2  Φ k x1 x2 - Ψ k x1 x2) -
    [ list] ky1;y2  l1;l2, Ψ k y1 y2.
  Proof.
    apply wand_intro_l. revert Φ Ψ l2.
    induction l1 as [|x1 l1 IH]=> Φ Ψ [|x2 l2] /=; [by rewrite sep_elim_r..|].
    rewrite intuitionistically_sep_dup -assoc [( _  _)%I]comm -!assoc assoc.
    apply sep_mono.
    - rewrite (forall_elim 0) (forall_elim x1) (forall_elim x2) !pure_True // !True_impl.
      by rewrite intuitionistically_elim wand_elim_l.
    - rewrite comm -(IH (Φ  S) (Ψ  S)) /=.
      apply sep_mono_l, affinely_mono, persistently_mono.
      apply forall_intro=> k. by rewrite (forall_elim (S k)).
  Qed.

  Global Instance big_sepL2_nil_persistent Φ :
    Persistent ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_persistent Φ l1 l2 :
    ( k x1 x2, Persistent (Φ k x1 x2)) 
    Persistent ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.

  Global Instance big_sepL2_nil_affine Φ :
    Affine ([ list] ky1;y2  []; [], Φ k y1 y2).
  Proof. simpl; apply _. Qed.
  Global Instance big_sepL2_affine Φ l1 l2 :
    ( k x1 x2, Affine (Φ k x1 x2)) 
    Affine ([ list] ky1;y2  l1;l2, Φ k y1 y2).
  Proof. rewrite big_sepL2_alt. apply _. Qed.
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
End sep_list2.

Section and_list.
  Context {A : Type}.
  Implicit Types l : list A.
  Implicit Types Φ Ψ : nat  A  PROP.

  Lemma big_andL_nil Φ : ([ list] ky  nil, Φ k y)  True.
  Proof. done. Qed.
  Lemma big_andL_nil' P Φ : P  [ list] ky  nil, Φ k y.
  Proof. by apply pure_intro. Qed.
  Lemma big_andL_cons Φ x l :
    ([ list] ky  x :: l, Φ k y)  Φ 0 x  [ list] ky  l, Φ (S k) y.
  Proof. by rewrite big_opL_cons. Qed.
  Lemma big_andL_singleton Φ x : ([ list] ky  [x], Φ k y)  Φ 0 x.
  Proof. by rewrite big_opL_singleton. Qed.
  Lemma big_andL_app Φ l1 l2 :
    ([ list] ky  l1 ++ l2, Φ k y)
     ([ list] ky  l1, Φ k y)  ([ list] ky  l2, Φ (length l1 + k) y).
  Proof. by rewrite big_opL_app. Qed.

  Lemma big_andL_mono Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  [ list] k  y  l, Ψ k y.
  Proof. apply big_opL_forall; apply _. Qed.
  Lemma big_andL_proper Φ Ψ l :
    ( k y, l !! k = Some y  Φ k y  Ψ k y) 
    ([ list] k  y  l, Φ k y)  ([ list] k  y  l, Ψ k y).
  Proof. apply big_opL_proper. Qed.
  Lemma big_andL_submseteq (Φ : A  PROP) l1 l2 :
    l1 + l2  ([ list] y  l2, Φ y)  [ list] y  l1, Φ y.
  Proof.
    intros [l ->]%submseteq_Permutation. by rewrite big_andL_app and_elim_l.
  Qed.

  Global Instance big_andL_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
           (big_opL (@bi_and PROP) (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_opL_forall; apply _ || intros; apply Hf. Qed.
488
  Global Instance big_andL_id_mono' :
489
    Proper (Forall2 () ==> ()) (big_opL (@bi_and PROP) (λ _ P, P)).
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
  Proof. by induction 1 as [|P Q Ps Qs HPQ ? IH]; rewrite /= ?HPQ ?IH. Qed.

  Lemma big_andL_lookup Φ l i x `{!Absorbing (Φ i x)} :
    l !! i = Some x  ([ list] ky  l, Φ k y)  Φ i x.
  Proof.
    intros. rewrite -(take_drop_middle l i x) // big_andL_app /=.
    rewrite Nat.add_0_r take_length_le;
      eauto using lookup_lt_Some, Nat.lt_le_incl, and_elim_l', and_elim_r'.
  Qed.

  Lemma big_andL_elem_of (Φ : A  PROP) l x `{!Absorbing (Φ x)} :
    x  l  ([ list] y  l, Φ y)  Φ x.
  Proof.
    intros [i ?]%elem_of_list_lookup; eauto using (big_andL_lookup (λ _, Φ)).
  Qed.

  Lemma big_andL_fmap {B} (f : A  B) (Φ : nat  B  PROP) l :
    ([ list] ky  f <$> l, Φ k y)  ([ list] ky  l, Φ k (f y)).
  Proof. by rewrite big_opL_fmap. Qed.

  Lemma big_andL_andL Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
  Proof. by rewrite big_opL_opL. Qed.

  Lemma big_andL_and Φ Ψ l :
    ([ list] kx  l, Φ k x  Ψ k x)
     ([ list] kx  l, Φ k x)  ([ list] kx  l, Ψ k x).
  Proof. auto using and_intro, big_andL_mono, and_elim_l, and_elim_r. Qed.

  Lemma big_andL_persistently Φ l :
521
    <pers> ([ list] kx  l, Φ k x)  [ list] kx  l, <pers> (Φ k x).
522
523
  Proof. apply (big_opL_commute _). Qed.

524
  Lemma big_andL_forall `{BiAffine PROP} Φ l :
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    ([ list] kx  l, Φ k x)  ( k x, l !! k = Some x  Φ k x).
  Proof.
    apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_andL_lookup. }
    revert Φ. induction l as [|x l IH]=> Φ; [by auto using big_andL_nil'|].
    rewrite big_andL_cons. apply and_intro.
    - by rewrite (forall_elim 0) (forall_elim x) pure_True // True_impl.
    - rewrite -IH. apply forall_intro=> k; by rewrite (forall_elim (S k)).
  Qed.

  Global Instance big_andL_nil_persistent Φ :
    Persistent ([ list] kx  [], Φ k x).
  Proof. simpl; apply _. Qed.
  Global Instance big_andL_persistent Φ l :
    ( k x, Persistent (Φ k x))  Persistent ([ list] kx  l, Φ k x).
  Proof. revert Φ. induction l as [|x l IH]=> Φ ? /=; apply _. Qed.
End and_list.
543

544
(** ** Big ops over finite maps *)
Dan Frumin's avatar
Dan Frumin committed
545
Section map.
546
547
  Context `{Countable K} {A : Type}.
  Implicit Types m : gmap K A.
Robbert Krebbers's avatar
Robbert Krebbers committed
548
  Implicit Types Φ Ψ : K  A  PROP.
549

Robbert Krebbers's avatar
Robbert Krebbers committed
550
551
552
553
  Lemma big_sepM_mono Φ Ψ m :
    ( k x, m !! k = Some x  Φ k x  Ψ k x) 
    ([ map] k  x  m, Φ k x)  [ map] k  x  m, Ψ k x.
  Proof. apply big_opM_forall; apply _ || auto. Qed.
554
555
  Lemma big_sepM_proper Φ Ψ m :
    ( k x, m !! k = Some x  Φ k x  Ψ k x) 
556
    ([ map] k  x  m, Φ k x)  ([ map] k  x  m, Ψ k x).
557
  Proof. apply big_opM_proper. Qed.
558
  Lemma big_sepM_subseteq `{BiAffine PROP} Φ m1 m2 :
Robbert Krebbers's avatar
Robbert Krebbers committed
559
560
    m2  m1  ([ map] k  x  m1, Φ k x)  [ map] k  x  m2, Φ k x.
  Proof. intros. by apply big_sepL_submseteq, map_to_list_submseteq. Qed.
561

562
563
  Global Instance big_sepM_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ ()) ==> (=) ==> ())
Robbert Krebbers's avatar
Robbert Krebbers committed
564
565
           (big_opM (@bi_sep PROP) (K:=K) (A:=A)).
  Proof. intros f g Hf m ? <-. apply big_sepM_mono=> ???; apply Hf. Qed.
566

Robbert Krebbers's avatar
Robbert Krebbers committed
567
  Lemma big_sepM_empty Φ : ([ map] kx  , Φ k x)  emp.
568
  Proof. by rewrite big_opM_empty. Qed.
569
  Lemma big_sepM_empty' `{BiAffine PROP} P Φ : P  [ map] kx  , Φ k x.
Robbert Krebbers's avatar
Robbert Krebbers committed
570
  Proof. rewrite big_sepM_empty. apply: affine. Qed.
571

572
  Lemma big_sepM_insert Φ m i x :
573
    m !! i = None 
574
    ([ map] ky  <[i:=x]> m, Φ k y)  Φ i x  [ map] ky  m, Φ k y.
575
  Proof. apply big_opM_insert. Qed.
576

577
  Lemma big_sepM_delete Φ m i x :
578
    m !! i = Some x 
579
    ([ map] ky  m, Φ k y)  Φ i x  [ map] ky  delete i m, Φ k y.
580
  Proof. apply big_opM_delete. Qed.
581

582
583
584
585
586
587
588
589
590
591
592
593
594
  Lemma big_sepM_insert_2 Φ m i x :
    TCOr ( x, Affine (Φ i x)) (Absorbing (Φ i x)) 
    Φ i x - ([ map] ky  m, Φ k y) - [ map] ky  <[i:=x]> m, Φ k y.
  Proof.
    intros Ha. apply wand_intro_r. destruct (m !! i) as [y|] eqn:Hi; last first.
    { by rewrite -big_sepM_insert. }
    assert (TCOr (Affine (Φ i y)) (Absorbing (Φ i x))).
    { destruct Ha; try apply _. }
    rewrite big_sepM_delete // assoc.
    rewrite (sep_elim_l (Φ i x)) -big_sepM_insert ?lookup_delete //.
    by rewrite insert_delete.
  Qed.

595
596
597
598
599
600
601
  Lemma big_sepM_lookup_acc Φ m i x :
    m !! i = Some x 
    ([ map] ky  m, Φ k y)  Φ i x  (Φ i x - ([ map] ky  m, Φ k y)).
  Proof.
    intros. rewrite big_sepM_delete //. by apply sep_mono_r, wand_intro_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
602
  Lemma big_sepM_lookup Φ m i x `{!Absorbing (Φ i x)} :
603
    m !! i = Some x  ([ map] ky  m, Φ k y)  Φ i x.
Robbert Krebbers's avatar
Robbert Krebbers committed
604
  Proof. intros. rewrite big_sepM_lookup_acc //. by rewrite sep_elim_l. Qed.
605

Robbert Krebbers's avatar
Robbert Krebbers committed
606
  Lemma big_sepM_lookup_dom (Φ : K  PROP) m i `{!Absorbing (Φ i)} :
Robbert Krebbers's avatar
Robbert Krebbers committed
607
608
    is_Some (m !! i)  ([ map] k_  m, Φ k)  Φ i.
  Proof. intros [x ?]. by eapply (big_sepM_lookup (λ i x, Φ i)). Qed.
609

610
  Lemma big_sepM_singleton Φ i x : ([ map] ky  {[i:=x]}, Φ k y)  Φ i x.
611
  Proof. by rewrite big_opM_singleton. Qed.
612

Robbert Krebbers's avatar
Robbert Krebbers committed
613
  Lemma big_sepM_fmap {B} (f : A  B) (Φ : K  B  PROP) m :
614
    ([ map] ky  f <$> m, Φ k y)  ([ map] ky  m, Φ k (f y)).
615
  Proof. by rewrite big_opM_fmap. Qed.
616

Robbert Krebbers's avatar
Robbert Krebbers committed
617
618
619
  Lemma big_sepM_insert_override Φ m i x x' :
    m !! i = Some x  (Φ i x  Φ i x') 
    ([ map] ky  <[i:=x']> m, Φ k y)  ([ map] ky  m, Φ k y).
620
  Proof. apply big_opM_insert_override. Qed.
621

Robbert Krebbers's avatar
Robbert Krebbers committed
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
  Lemma big_sepM_insert_override_1 Φ m i x x' :
    m !! i = Some x 
    ([ map] ky  <[i:=x']> m, Φ k y) 
      (Φ i x' - Φ i x) - ([ map] ky  m, Φ k y).
  Proof.
    intros ?. apply wand_intro_l.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
    by rewrite assoc wand_elim_l -big_sepM_delete.
  Qed.

  Lemma big_sepM_insert_override_2 Φ m i x x' :
    m !! i = Some x 
    ([ map] ky  m, Φ k y) 
      (Φ i x - Φ i x') - ([ map] ky  <[i:=x']> m, Φ k y).
  Proof.
    intros ?. apply wand_intro_l.
    rewrite {1}big_sepM_delete //; rewrite assoc wand_elim_l.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
  Qed.

Dan Frumin's avatar
Dan Frumin committed
642
643
644
645
646
647
648
649
650
651
652
  Lemma big_sepM_insert_acc Φ m i x :
    m !! i = Some x 
    ([ map] ky  m, Φ k y) 
      Φ i x  ( x', Φ i x' - ([ map] ky  <[i:=x']> m, Φ k y)).
  Proof.
    intros ?. rewrite {1}big_sepM_delete //. apply sep_mono; [done|].
    apply forall_intro=> x'.
    rewrite -insert_delete big_sepM_insert ?lookup_delete //.
    by apply wand_intro_l.
  Qed.

Robbert Krebbers's avatar
Robbert Krebbers committed
653
  Lemma big_sepM_fn_insert {B} (Ψ : K  A  B  PROP) (f : K  B) m i x b :
654
    m !! i = None 
655
656
       ([ map] ky  <[i:=x]> m, Ψ k y (<[i:=b]> f k))
     (Ψ i x b  [ map] ky  m, Ψ k y (f k)).
657
  Proof. apply big_opM_fn_insert. Qed.
658

Robbert Krebbers's avatar
Robbert Krebbers committed
659
  Lemma big_sepM_fn_insert' (Φ : K  PROP) m i x P :
660
    m !! i = None 
661
    ([ map] ky  <[i:=x]> m, <[i:=P]> Φ k)  (P  [ map] ky  m, Φ k).
662
  Proof. apply big_opM_fn_insert'. Qed.
663

664
665
666
667
668
669
  Lemma big_sepM_union Φ m1 m2 :
    m1 ## m2 
    ([ map] ky  m1  m2, Φ k y)
     ([ map] ky  m1, Φ k y)  ([ map] ky  m2, Φ k y).
  Proof. apply big_opM_union. Qed.

670
  Lemma big_sepM_sepM Φ Ψ m :
671
    ([ map] kx  m, Φ k x  Ψ k x)
672
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
673
  Proof. apply big_opM_opM. Qed.
674

675
676
677
  Lemma big_sepM_and Φ Ψ m :
    ([ map] kx  m, Φ k x  Ψ k x)
     ([ map] kx  m, Φ k x)  ([ map] kx  m, Ψ k x).
Robbert Krebbers's avatar
Robbert Krebbers committed
678
  Proof. auto using and_intro, big_sepM_mono, and_elim_l, and_elim_r. Qed.
679

680
  Lemma big_sepM_persistently `{BiAffine PROP} Φ m :
681
    (<pers> ([ map] kx  m, Φ k x))  ([ map] kx  m, <pers> (Φ k x)).
682
  Proof. apply (big_opM_commute _). Qed.
683

684
  Lemma big_sepM_forall `{BiAffine PROP} Φ m :
685
    ( k x, Persistent (Φ k x)) 
Ralf Jung's avatar
Ralf Jung committed
686
    ([ map] kx  m, Φ k x)  ( k x, m !! k = Some x  Φ k x).
687
688
689
  Proof.
    intros. apply (anti_symm _).
    { apply forall_intro=> k; apply forall_intro=> x.
Robbert Krebbers's avatar
Robbert Krebbers committed
690
691
      apply impl_intro_l, pure_elim_l=> ?; by apply: big_sepM_lookup. }
    induction m as [|i x m ? IH] using map_ind; auto using big_sepM_empty'.
692
    rewrite big_sepM_insert // -persistent_and_sep. apply and_intro.
693
    - rewrite (forall_elim i) (forall_elim x) lookup_insert.
694
      by rewrite pure_True // True_impl.
695
    - rewrite -IH. apply forall_mono=> k; apply forall_mono=> y.
696
697
      apply impl_intro_l, pure_elim_l=> ?.
      rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
698
      by rewrite pure_True // True_impl.
699
700
701
  Qed.

  Lemma big_sepM_impl Φ Ψ m :
Robbert Krebbers's avatar
Robbert Krebbers committed
702
    ([ map] kx  m, Φ k x) -
703
     ( k x, m !! k = Some x  Φ k x - Ψ k x) -
Robbert Krebbers's avatar
Robbert Krebbers committed
704
    [ map] kx  m, Ψ k x.
705
  Proof.
Robbert Krebbers's avatar
Robbert Krebbers committed
706
707
    apply wand_intro_l. induction m as [|i x m ? IH] using map_ind.
    { by rewrite sep_elim_r. }
708
    rewrite !big_sepM_insert // intuitionistically_sep_dup.
709
    rewrite -assoc [( _  _)%I]comm -!assoc assoc. apply sep_mono.
Robbert Krebbers's avatar
Robbert Krebbers committed
710
    - rewrite (forall_elim i) (forall_elim x) pure_True ?lookup_insert //.
711
      by rewrite True_impl intuitionistically_elim wand_elim_l.
Robbert Krebbers's avatar
Robbert Krebbers committed
712
    - rewrite comm -IH /=.
713
      apply sep_mono_l, affinely_mono, persistently_mono, forall_mono=> k.
Robbert Krebbers's avatar
Robbert Krebbers committed
714
715
716
      apply forall_mono=> y. apply impl_intro_l, pure_elim_l=> ?.
      rewrite lookup_insert_ne; last by intros ?; simplify_map_eq.
      by rewrite pure_True // True_impl.
717
  Qed.
718

719
  Global Instance big_sepM_empty_persistent Φ :
720
    Persistent ([ map] kx  , Φ k x).
721
  Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
722
  Global Instance big_sepM_persistent Φ m :
723
    ( k x, Persistent (Φ k x))  Persistent ([ map] kx  m, Φ k x).
724
  Proof. intros. apply big_sepL_persistent=> _ [??]; apply _. Qed.
725

726
727
728
  Global Instance big_sepM_empty_affine Φ :
    Affine ([ map] kx  , Φ k x).
  Proof. rewrite /big_opM map_to_list_empty. apply _. Qed.
729
730
  Global Instance big_sepM_affine Φ m :
    ( k x, Affine (Φ k x))  Affine ([ map] kx  m, Φ k x).
731
  Proof. intros. apply big_sepL_affine=> _ [??]; apply _. Qed.
Dan Frumin's avatar
Dan Frumin committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
End map.

(** ** Big ops over two maps *)
Section map2.
  Context `{Countable K} {A B : Type}.
  Implicit Types Φ Ψ : K  A  B  PROP.

  Lemma big_sepM2_dom Φ m1 m2 :
    ([ map] ky1;y2  m1; m2, Φ k y1 y2) -  dom (gset K) m1 = dom (gset K) m2 .
  Proof.
    rewrite /big_sepM2 and_elim_l. apply pure_mono=>Hm.
    set_unfold=>k. by rewrite !elem_of_dom.
  Qed.

  Lemma big_sepM2_mono Φ Ψ m1 m2 :
    ( k y1 y2, m1 !! k = Some y1  m2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ map] k  y1;y2  m1;m2, Φ k y1 y2)  [ map] k  y1;y2  m1;m2, Ψ k y1 y2.
  Proof.
    intros Hm1m2. rewrite /big_sepM2. apply and_mono_r, big_sepM_mono.
    intros k [x1 x2]. rewrite map_lookup_zip_with.
    specialize (Hm1m2 k x1 x2).
    destruct (m1 !! k) as [y1|]; last done.
    destruct (m2 !! k) as [y2|]; simpl; last done.
    intros ?; simplify_eq. by apply Hm1m2.
  Qed.
  Lemma big_sepM2_proper Φ Ψ m1 m2 :
    ( k y1 y2, m1 !! k = Some y1  m2 !! k = Some y2  Φ k y1 y2  Ψ k y1 y2) 
    ([ map] k  y1;y2  m1;m2, Φ k y1 y2)  [ map] k  y1;y2  m1;m2, Ψ k y1 y2.
  Proof.
    intros; apply (anti_symm _);
      apply big_sepM2_mono; auto using equiv_entails, equiv_entails_sym.
  Qed.

  Global Instance big_sepM2_ne n :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ (dist n)))
      ==> (=) ==> (=) ==> (dist n))
           (big_sepM2 (PROP:=PROP) (K:=K) (A:=A) (B:=B)).
  Proof.
    intros Φ1 Φ2 HΦ x1 ? <- x2 ? <-. rewrite /big_sepM2. f_equiv.
    f_equiv=> k [y1 y2]. apply HΦ.
  Qed.
  Global Instance big_sepM2_mono' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepM2 (PROP:=PROP) (K:=K) (A:=A) (B:=B)).
  Proof. intros f g Hf m1 ? <- m2 ? <-. apply big_sepM2_mono; intros; apply Hf. Qed.
  Global Instance big_sepM2_proper' :
    Proper (pointwise_relation _ (pointwise_relation _ (pointwise_relation _ ()))
      ==> (=) ==> (=) ==> ())
           (big_sepM2 (PROP:=PROP) (K:=K) (A:=A) (B:=B)).
  Proof. intros f g Hf m1 ? <- m2 ? <-. apply big_sepM2_proper; intros; apply Hf. Qed.

  Lemma big_sepM2_empty Φ : ([ map] ky1;y2  ; , Φ k y1 y2)  emp.
  Proof.
    rewrite /big_sepM2 pure_True ?left_id //.
    intros k. rewrite !lookup_empty; split; by inversion 1.
  Qed.
  Lemma big_sepM2_empty' `{BiAffine PROP} P Φ : P  [ map] ky1;y2  ;, Φ k y1 y2.
  Proof. rewrite big_sepM2_empty. apply (affine _). Qed.

  Lemma big_sepM2_empty_l m1 Φ :
    ([ map] ky1;y2  m1; , Φ k y1 y2)  m1 = ∅⌝.
  Proof.
    rewrite big_sepM2_dom dom_empty_L.
    apply pure_mono, dom_empty_inv_L.
  Qed.

  Lemma big_sepM2_empty_r m2 Φ :
    ([ map] ky1;y2  ; m2, Φ k y1 y2)  m2 = ∅⌝.
  Proof.
    rewrite big_sepM2_dom dom_empty_L.
    apply pure_mono=>?. eapply (dom_empty_inv_L (D:=gset K)). eauto.
  Qed.

  Lemma big_sepM2_insert Φ m1 m2 i x1 x2 :
    m1 !! i = None  m2 !! i = None 
    ([ map] ky1;y2  <[i:=x1]>m1; <[i:=x2]>m2, Φ k y1 y2)
     Φ i x1 x2  [ map] ky1;y2  m1;m2, Φ k y1 y2.
  Proof.
    intros Hm1 Hm2. rewrite /big_sepM2 -map_insert_zip_with.
812
813
    rewrite big_sepM_insert;
      last by rewrite map_lookup_zip_with Hm1.
Dan Frumin's avatar
Dan Frumin committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    rewrite !persistent_and_affinely_sep_l /=.
    rewrite sep_assoc (sep_comm _ (Φ _ _ _)) -sep_assoc.
    repeat apply sep_proper=>//.
    apply affinely_proper, pure_proper.
    split.
    - intros H1 k. destruct (decide (i = k)) as [->|?].
      + rewrite Hm1 Hm2 //. by split; intros ?; exfalso; eapply is_Some_None.
      + specialize (H1 k). revert H1. rewrite !lookup_insert_ne //.
    - intros H1 k. destruct (decide (i = k)) as [->|?].
      + rewrite !lookup_insert. split; by econstructor.
      + rewrite !lookup_insert_ne //.
  Qed.

  Lemma big_sepM2_delete Φ m1 m2 i x1 x2 :
    m1 !! i = Some x1  m2 !! i = Some x2 
    ([ map] kx;y  m1;m2, Φ k x y) 
      Φ i x1 x2  [ map] kx;y  delete i m1;delete i m2, Φ k x y.
  Proof.
    rewrite /big_sepM2 => Hx1 Hx2.
    rewrite !persistent_and_affinely_sep_l /=.
    rewrite sep_assoc (sep_comm  (Φ _ _ _)) -sep_assoc.
    apply sep_proper.
    - apply affinely_proper, pure_proper. split.
      + intros Hm k. destruct (decide (i = k)) as [->|?].
        { rewrite !lookup_delete. split; intros []%is_Some_None. }
        rewrite !lookup_delete_ne //.
      + intros Hm k. specialize (Hm k). revert Hm. destruct (decide (i = k)) as [->|?].
        { intros _. rewrite Hx1 Hx2. split; eauto. }
        rewrite !lookup_delete_ne //.
    - rewrite -map_delete_zip_with.
      apply (big_sepM_delete (λ i xx, Φ i xx.1 xx.2) (map_zip m1 m2) i (x1,x2)).
      by rewrite map_lookup_zip_with Hx1 Hx2.
  Qed.

  Lemma big_sepM2_insert_acc Φ m1 m2 i x1 x2 :
    m1 !! i = Some x1  m2 !! i = Some x2 
    ([ map] ky1;y2  m1;m2, Φ k y1 y2) 
    Φ i x1 x2  ( x1' x2', Φ i x1' x2' -
        ([ map] ky1;y2  <[i:=x1']>m1;<[i:=x2']>m2, Φ k y1 y2)).
  Proof.
    intros ??. rewrite {1}big_sepM2_delete //. apply sep_mono; [done|].
    apply forall_intro=> x1'. apply forall_intro=> x2'.
    rewrite -(insert_delete m1) -(insert_delete m2) big_sepM2_insert ?lookup_delete //.
    by apply wand_intro_l.
  Qed.

  Lemma big_sepM2_insert_2 Φ m1 m2 i x1 x2 :
    TCOr ( x y, Affine (Φ i x y)) (Absorbing (Φ i x1 x2)) 
    Φ i x1 x2 -
    ([ map] ky1;y2  m1;m2, Φ k y1 y2) -
    ([ map] ky1;y2  <[i:=x1]>m1; <[i:=x2]>m2, Φ k y1 y2).
  Proof.
    intros Ha. rewrite /big_sepM2.
    assert (TCOr ( x, Affine (Φ i x.1 x.2)) (Absorbing (Φ i x1 x2))).
    { destruct Ha; try apply _. }
    apply wand_intro_r.
    rewrite !persistent_and_affinely_sep_l /=.
    rewrite (sep_comm  (Φ _ _ _)) -sep_assoc. apply sep_mono.
    { apply affinely_mono, pure_mono. intros Hm k.
      destruct (decide (i = k)) as [->|].
      - rewrite !lookup_insert. split; eauto.
      - rewrite !lookup_insert_ne //. }
    rewrite (big_sepM_insert_2 (λ k xx, Φ k xx.1 xx.2) (map_zip m1 m2) i (x1, x2)).
    rewrite map_insert_zip_with. apply wand_elim_r.
  Qed.

  Lemma big_sepM2_lookup_acc Φ m1 m2 i x1 x2 :
    m1 !! i = Some x1  m2 !! i = Some x2 
    ([ map] ky1;y2  m1;m2, Φ k y1 y2) 
    Φ i x1 x2  (Φ i x1 x2 - ([ map] ky1;y2  m1;m2, Φ k y1 y2)).
  Proof.
    intros Hm1 Hm2. etrans; first apply big_sepM2_insert_acc=>//.
    apply sep_mono_r. rewrite (forall_elim x1) (forall_elim x2).
    rewrite !insert_id //.
 Qed.

  Lemma big_sepM2_lookup Φ m1