lifting.v 5.79 KB
Newer Older
1
2
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import ownership ectx_lifting. (* for ownP *)
3
From iris.heap_lang Require Export lang.
4
From iris.heap_lang Require Import tactics.
5
From iris.proofmode Require Import weakestpre.
6
Import uPred.
Robbert Krebbers's avatar
Robbert Krebbers committed
7
Local Hint Extern 0 (head_reducible _ _) => do_head_step eauto 2.
8

9
Section lifting.
10
Context {Σ : iFunctor}.
11
12
Implicit Types P Q : iProp heap_lang Σ.
Implicit Types Φ : val  iProp heap_lang Σ.
13
Implicit Types ef : option (expr []).
Ralf Jung's avatar
Ralf Jung committed
14

15
(** Bind. This bundles some arguments that wp_ectx_bind leaves as indices. *)
16
Lemma wp_bind {E e} K Φ :
17
  WP e @ E {{ v, WP fill K (of_val v) @ E {{ Φ }} }}  WP fill K e @ E {{ Φ }}.
18
Proof. exact: wp_ectx_bind. Qed.
Ralf Jung's avatar
Ralf Jung committed
19

Ralf Jung's avatar
Ralf Jung committed
20
21
22
23
24
Lemma wp_bindi {E e} Ki Φ :
  WP e @ E {{ v, WP fill_item Ki (of_val v) @ E {{ Φ }} }} 
     WP fill_item Ki e @ E {{ Φ }}.
Proof. exact: weakestpre.wp_bind. Qed.

25
(** Base axioms for core primitives of the language: Stateful reductions. *)
26
Lemma wp_alloc_pst E σ e v Φ :
27
  to_val e = Some v 
28
   ownP σ   ( l, σ !! l = None  ownP (<[l:=v]>σ) ={E}= Φ (LitV (LitLoc l)))
29
   WP Alloc e @ E {{ Φ }}.
30
Proof.
Ralf Jung's avatar
Ralf Jung committed
31
  iIntros {?}  "[HP HΦ]".
32
33
34
35
  iApply (wp_lift_atomic_head_step (Alloc e) σ); try (by simpl; eauto).
  iFrame "HP". iNext. iIntros {v2 σ2 ef} "[% HP]". inv_head_step.
  match goal with H: _ = of_val v2 |- _ => apply (inj of_val (LitV _)) in H end.
  subst v2. iSplit; last done. iApply "HΦ"; by iSplit.
36
Qed.
37

38
Lemma wp_load_pst E σ l v Φ :
Ralf Jung's avatar
Ralf Jung committed
39
  σ !! l = Some v 
40
   ownP σ   (ownP σ ={E}= Φ v)  WP Load (Lit (LitLoc l)) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
41
Proof.
42
  intros. rewrite -(wp_lift_atomic_det_head_step σ v σ None) ?right_id //;
Robbert Krebbers's avatar
Robbert Krebbers committed
43
    last (by intros; inv_head_step; eauto using to_of_val); simpl; by eauto.
Ralf Jung's avatar
Ralf Jung committed
44
Qed.
45

46
Lemma wp_store_pst E σ l e v v' Φ :
47
  to_val e = Some v  σ !! l = Some v' 
48
   ownP σ   (ownP (<[l:=v]>σ) ={E}= Φ (LitV LitUnit))
49
   WP Store (Lit (LitLoc l)) e @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
50
Proof.
51
  intros. rewrite-(wp_lift_atomic_det_head_step σ (LitV LitUnit) (<[l:=v]>σ) None)
Robbert Krebbers's avatar
Robbert Krebbers committed
52
    ?right_id //; last (by intros; inv_head_step; eauto); simpl; by eauto.
Ralf Jung's avatar
Ralf Jung committed
53
Qed.
54

55
Lemma wp_cas_fail_pst E σ l e1 v1 e2 v2 v' Φ :
56
  to_val e1 = Some v1  to_val e2 = Some v2  σ !! l = Some v'  v'  v1 
57
   ownP σ   (ownP σ ={E}= Φ (LitV $ LitBool false))
58
   WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
59
Proof.
60
  intros. rewrite -(wp_lift_atomic_det_head_step σ (LitV $ LitBool false) σ None)
Robbert Krebbers's avatar
Robbert Krebbers committed
61
    ?right_id //; last (by intros; inv_head_step; eauto);
62
    simpl; by eauto 10.
Ralf Jung's avatar
Ralf Jung committed
63
Qed.
64

65
Lemma wp_cas_suc_pst E σ l e1 v1 e2 v2 Φ :
66
  to_val e1 = Some v1  to_val e2 = Some v2  σ !! l = Some v1 
67
   ownP σ   (ownP (<[l:=v2]>σ) ={E}= Φ (LitV $ LitBool true))
68
   WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
69
Proof.
70
  intros. rewrite -(wp_lift_atomic_det_head_step σ (LitV $ LitBool true)
Robbert Krebbers's avatar
Robbert Krebbers committed
71
    (<[l:=v2]>σ) None) ?right_id //; last (by intros; inv_head_step; eauto);
72
    simpl; by eauto 10.
Ralf Jung's avatar
Ralf Jung committed
73
74
Qed.

75
(** Base axioms for core primitives of the language: Stateless reductions *)
76
Lemma wp_fork E e Φ :
77
   (|={E}=> Φ (LitV LitUnit))   WP e {{ _, True }}  WP Fork e @ E {{ Φ }}.
78
Proof.
79
  rewrite -(wp_lift_pure_det_head_step (Fork e) (Lit LitUnit) (Some e)) //=;
Robbert Krebbers's avatar
Robbert Krebbers committed
80
    last by intros; inv_head_step; eauto.
81
  rewrite later_sep -(wp_value_pvs _ _ (Lit _)) //.
82
Qed.
83

84
Lemma wp_rec E f x erec e1 e2 v2 Φ :
85
  e1 = Rec f x erec 
86
  to_val e2 = Some v2 
Robbert Krebbers's avatar
Robbert Krebbers committed
87
   WP subst' x e2 (subst' f e1 erec) @ E {{ Φ }}  WP App e1 e2 @ E {{ Φ }}.
88
89
90
91
92
Proof.
  intros -> ?. rewrite -(wp_lift_pure_det_head_step (App _ _)
    (subst' x e2 (subst' f (Rec f x erec) erec)) None) //= ?right_id;
    intros; inv_head_step; eauto.
Qed.
93

94
Lemma wp_un_op E op l l' Φ :
95
  un_op_eval op l = Some l' 
96
   (|={E}=> Φ (LitV l'))  WP UnOp op (Lit l) @ E {{ Φ }}.
97
Proof.
98
  intros. rewrite -(wp_lift_pure_det_head_step (UnOp op _) (Lit l') None)
99
    ?right_id -?wp_value_pvs //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
100
Qed.
101

102
Lemma wp_bin_op E op l1 l2 l' Φ :
103
  bin_op_eval op l1 l2 = Some l' 
104
   (|={E}=> Φ (LitV l'))  WP BinOp op (Lit l1) (Lit l2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
105
Proof.
106
  intros Heval. rewrite -(wp_lift_pure_det_head_step (BinOp op _ _) (Lit l') None)
107
    ?right_id -?wp_value_pvs //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
108
Qed.
109

110
Lemma wp_if_true E e1 e2 Φ :
111
   WP e1 @ E {{ Φ }}  WP If (Lit (LitBool true)) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
112
Proof.
113
  rewrite -(wp_lift_pure_det_head_step (If _ _ _) e1 None)
Robbert Krebbers's avatar
Robbert Krebbers committed
114
    ?right_id //; intros; inv_head_step; eauto.
115
116
Qed.

117
Lemma wp_if_false E e1 e2 Φ :
118
   WP e2 @ E {{ Φ }}  WP If (Lit (LitBool false)) e1 e2 @ E {{ Φ }}.
119
Proof.
120
  rewrite -(wp_lift_pure_det_head_step (If _ _ _) e2 None)
Robbert Krebbers's avatar
Robbert Krebbers committed
121
    ?right_id //; intros; inv_head_step; eauto.
122
Qed.
123

124
Lemma wp_fst E e1 v1 e2 v2 Φ :
125
  to_val e1 = Some v1  to_val e2 = Some v2 
126
   (|={E}=> Φ v1)  WP Fst (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
127
Proof.
128
  intros. rewrite -(wp_lift_pure_det_head_step (Fst _) e1 None)
129
    ?right_id -?wp_value_pvs //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
130
Qed.
131

132
Lemma wp_snd E e1 v1 e2 v2 Φ :
133
  to_val e1 = Some v1  to_val e2 = Some v2 
134
   (|={E}=> Φ v2)  WP Snd (Pair e1 e2) @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
135
Proof.
136
  intros. rewrite -(wp_lift_pure_det_head_step (Snd _) e2 None)
137
    ?right_id -?wp_value_pvs //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
138
Qed.
139

140
Lemma wp_case_inl E e0 v0 e1 e2 Φ :
141
  to_val e0 = Some v0 
142
   WP App e1 e0 @ E {{ Φ }}  WP Case (InjL e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
143
Proof.
144
  intros. rewrite -(wp_lift_pure_det_head_step (Case _ _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
145
    (App e1 e0) None) ?right_id //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
146
Qed.
147

148
Lemma wp_case_inr E e0 v0 e1 e2 Φ :
149
  to_val e0 = Some v0 
150
   WP App e2 e0 @ E {{ Φ }}  WP Case (InjR e0) e1 e2 @ E {{ Φ }}.
Ralf Jung's avatar
Ralf Jung committed
151
Proof.
152
  intros. rewrite -(wp_lift_pure_det_head_step (Case _ _ _)
Robbert Krebbers's avatar
Robbert Krebbers committed
153
    (App e2 e0) None) ?right_id //; intros; inv_head_step; eauto.
Ralf Jung's avatar
Ralf Jung committed
154
Qed.
155
End lifting.