heap_lang.v 10.7 KB
Newer Older
1
Require Export Autosubst.Autosubst.
2
3
Require Export iris.language.
Require Import prelude.gmap.
4

5
6
Module heap_lang.
(** Expressions and vals. *)
7
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
8

Ralf Jung's avatar
Ralf Jung committed
9
Inductive expr :=
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  (* Base lambda calculus *)
  | Var (x : var)
  | Rec (e : {bind 2 of expr}) (* These are recursive lambdas.
                                  The *inner* binder is the recursive call! *)
  | App (e1 e2 : expr)
  (* Natural numbers *)
  | LitNat (n : nat)
  | Plus (e1 e2 : expr)
  | Le (e1 e2 : expr)
  (* Unit *)
  | LitUnit
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
  | Case (e0 : expr) (e1 : {bind expr}) (e2 : {bind expr})
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | Cas (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
37
38
39
40
41
42

Instance Ids_expr : Ids expr. derive. Defined.
Instance Rename_expr : Rename expr. derive. Defined.
Instance Subst_expr : Subst expr. derive. Defined.
Instance SubstLemmas_expr : SubstLemmas expr. derive. Qed.

43
44
45
46
47
48
49
50
51
52
53
54
55
56
(* This sugar is used by primitive reduction riles (<=, CAS) and hence
defined here. *)
Notation LitTrue := (InjL LitUnit).
Notation LitFalse := (InjR LitUnit).

Inductive val :=
  | RecV (e : {bind 2 of expr}) (* These are recursive lambdas.
                                   The *inner* binder is the recursive call! *)
  | LitNatV (n : nat)
  | LitUnitV
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
57

Ralf Jung's avatar
Ralf Jung committed
58
59
Definition LitTrueV := InjLV LitUnitV.
Definition LitFalseV := InjRV LitUnitV.
Ralf Jung's avatar
Ralf Jung committed
60

61
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
62
  match v with
63
  | RecV e => Rec e
64
65
  | LitNatV n => LitNat n
  | LitUnitV => LitUnit
66
67
68
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
69
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
70
  end.
71
Fixpoint to_val (e : expr) : option val :=
72
  match e with
Ralf Jung's avatar
Ralf Jung committed
73
  | Rec e => Some (RecV e)
74
75
  | LitNat n => Some (LitNatV n)
  | LitUnit => Some LitUnitV
76
77
78
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
79
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
80
  | _ => None
81
82
  end.

83
84
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
85

86
(** Evaluation contexts *)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
  | PlusLCtx (e2 : expr)
  | PlusRCtx (v1 : val)
  | LeLCtx (e2 : expr)
  | LeRCtx (v1 : val)
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
  | CaseCtx (e1 : {bind expr}) (e2 : {bind expr})
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val)
  | CasLCtx (e1 : expr)  (e2 : expr)
  | CasMCtx (v0 : val) (e2 : expr)
  | CasRCtx (v0 : val) (v1 : val).
Notation ectx := (list ectx_item).
Implicit Types Ki : ectx_item.
Implicit Types K : ectx.

Definition ectx_item_fill (Ki : ectx_item) (e : expr) : expr :=
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
  | PlusLCtx e2 => Plus e e2
  | PlusRCtx v1 => Plus (of_val v1) e
  | LeLCtx e2 => Le e e2
  | LeRCtx v1 => Le (of_val v1) e
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
  | CaseCtx e1 e2 => Case e e1 e2
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
134
  end.
135
136
137
Instance ectx_fill : Fill ectx expr :=
  fix go K e := let _ : Fill _ _ := @go in
  match K with [] => e | Ki :: K => ectx_item_fill Ki (fill K e) end.
Ralf Jung's avatar
Ralf Jung committed
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
(** The stepping relation *)
Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
  | BetaS e1 e2 v2 σ :
     to_val e2 = Some v2 
     head_step (App (Rec e1) e2) σ e1.[(Rec e1),e2/] σ None
  | PlusS n1 n2 σ:
     head_step (Plus (LitNat n1) (LitNat n2)) σ (LitNat (n1 + n2)) σ None
  | LeTrueS n1 n2 σ :
     n1  n2 
     head_step (Le (LitNat n1) (LitNat n2)) σ LitTrue σ None
  | LeFalseS n1 n2 σ :
     n1 > n2 
     head_step (Le (LitNat n1) (LitNat n2)) σ LitFalse σ None
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
  | CaseLS e0 v0 e1 e2 σ :
     to_val e0 = Some v0 
     head_step (Case (InjL e0) e1 e2) σ e1.[e0/] σ None
  | CaseRS e0 v0 e1 e2 σ :
     to_val e0 = Some v0 
     head_step (Case (InjR e0) e1 e2) σ e2.[e0/] σ None
  | ForkS e σ:
     head_step (Fork e) σ LitUnit σ (Some e)
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
     head_step (Store (Loc l) e) σ LitUnit (<[l:=v]>σ) None
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
     head_step (Cas (Loc l) e1 e2) σ LitFalse σ None
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
     head_step (Cas (Loc l) e1 e2) σ LitTrue (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
183

184
185
186
187
188
189
190
191
192
(** Atomic expressions *)
Definition atomic (e: expr) :=
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
  | _ => False
  end.
193

194
195
196
197
198
199
200
201
202
203
204
205
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
Inductive prim_step
    (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
  Ectx_step (K : ectx) e1' e2' :
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
Proof. by induction v; simplify_option_equality. Qed.
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
206
Proof.
207
  revert v; induction e; intros; simplify_option_equality; auto with f_equal.
208
Qed.
209
210
211
212
213
214
215
216
217
Instance: Injective (=) (=) of_val.
Proof. by intros ?? Hv; apply (injective Some); rewrite -!to_of_val Hv. Qed.
Instance ectx_item_fill_inj Ki : Injective (=) (=) (ectx_item_fill Ki).
Proof. destruct Ki; intros ???; simplify_equality'; auto with f_equal. Qed.
Instance ectx_fill_inj K : Injective (=) (=) (fill K).
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
218
Proof.
219
220
  intros [v' Hv']; revert v' Hv'.
  induction K as [|[]]; intros; simplify_option_equality; eauto.
221
Qed.
222
223
224
225
226
227
228
229
230
231
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
Lemma values_head_stuck e1 σ1 e2 σ2 ef :
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
232
Proof.
233
234
  rewrite eq_None_not_Some.
  destruct K as [|[]]; naive_solver eauto using fill_val.
235
Qed.
236
237
238
239
240
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Proof. destruct 2; simpl; rewrite ?to_of_val; naive_solver. Qed.
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
241
Proof.
242
243
244
  intros Hatomic [K e1' e2' -> -> Hstep].
  assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
245
Qed.
246
247
248
249
250
251
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
  head_step (ectx_item_fill Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
Proof. destruct Ki; inversion_clear 1; simplify_option_equality; eauto. Qed.
Lemma fill_item_inj Ki1 Ki2 e1 e2 :
  to_val e1 = None  to_val e2 = None 
  ectx_item_fill Ki1 e1 = ectx_item_fill Ki2 e2  Ki1 = Ki2.
252
Proof.
253
254
255
256
  destruct Ki1, Ki2; intros; try discriminate; simplify_equality';
    repeat match goal with
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
257
Qed.
258
259
260
261
262
263
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
264
Proof.
265
266
267
268
269
270
271
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
  destruct K' as [|Ki' K']; simplify_equality'.
  { destruct (proj1 (eq_None_not_Some (to_val (fill K e1))));
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
  eauto using fill_item_inj, values_head_stuck, fill_not_val.
272
Qed.
273
274
275
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
276
Proof.
277
  by intros; apply AllocS, (not_elem_of_dom (D:=gset positive)), is_fresh.
278
Qed.
279
280
281
282
283
284
285
286
287
288
289
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
  expr := heap_lang.expr; val := heap_lang.val; state := heap_lang.state;
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
  heap_lang.values_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
Global Instance heap_lang_ctx : CtxLanguage heap_lang heap_lang.ectx.
290
Proof.
291
292
293
294
295
296
297
298
299
300
  split.
  * eauto using heap_lang.fill_not_val.
  * intros K ????? [K' e1' e2' Heq1 Heq2 Hstep].
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
  * intros K e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
    rewrite heap_lang.fill_app in Heq1; apply (injective _) in Heq1.
    exists (fill K' e2''); rewrite heap_lang.fill_app; split; auto.
    econstructor; eauto.
301
Qed.