lifting.v 12.8 KB
Newer Older
1
From iris.algebra Require Import auth gmap.
2
From iris.base_logic Require Export gen_heap.
3 4
From iris.program_logic Require Export weakestpre.
From iris.program_logic Require Import ectx_lifting total_ectx_lifting.
5
From iris.heap_lang Require Export lang proph_map.
6
From iris.heap_lang Require Import tactics.
7
From iris.proofmode Require Import tactics.
Ralf Jung's avatar
Ralf Jung committed
8
From stdpp Require Import fin_maps.
9
Set Default Proof Using "Type".
Ralf Jung's avatar
Ralf Jung committed
10

11 12
Class heapG Σ := HeapG {
  heapG_invG : invG Σ;
13 14
  heapG_gen_heapG :> gen_heapG loc val Σ;
  heapG_proph_mapG :> proph_mapG proph val Σ
15 16 17 18
}.

Instance heapG_irisG `{heapG Σ} : irisG heap_lang Σ := {
  iris_invG := heapG_invG;
19 20
  state_interp σ κs :=
    (gen_heap_ctx σ.1  proph_map_ctx κs σ.2)%I
21 22 23 24
}.

(** Override the notations so that scopes and coercions work out *)
Notation "l ↦{ q } v" := (mapsto (L:=loc) (V:=val) l q v%V)
Robbert Krebbers's avatar
Robbert Krebbers committed
25
  (at level 20, q at level 50, format "l  ↦{ q }  v") : bi_scope.
26
Notation "l ↦ v" :=
Robbert Krebbers's avatar
Robbert Krebbers committed
27
  (mapsto (L:=loc) (V:=val) l 1 v%V) (at level 20) : bi_scope.
28
Notation "l ↦{ q } -" := ( v, l {q} v)%I
Robbert Krebbers's avatar
Robbert Krebbers committed
29 30
  (at level 20, q at level 50, format "l  ↦{ q }  -") : bi_scope.
Notation "l ↦ -" := (l {1} -)%I (at level 20) : bi_scope.
31

32 33 34
Notation "p ⥱ v" := (p_mapsto p v) (at level 20, format "p ⥱ v") : bi_scope.
Notation "p ⥱ -" := ( v, p  v)%I (at level 20) : bi_scope.

35 36 37 38 39 40 41 42 43
(** The tactic [inv_head_step] performs inversion on hypotheses of the shape
[head_step]. The tactic will discharge head-reductions starting from values, and
simplifies hypothesis related to conversions from and to values, and finite map
operations. This tactic is slightly ad-hoc and tuned for proving our lifting
lemmas. *)
Ltac inv_head_step :=
  repeat match goal with
  | _ => progress simplify_map_eq/= (* simplify memory stuff *)
  | H : to_val _ = Some _ |- _ => apply of_to_val in H
44
  | H : head_step ?e _ _ _ _ _ |- _ =>
45 46 47 48 49
     try (is_var e; fail 1); (* inversion yields many goals if [e] is a variable
     and can thus better be avoided. *)
     inversion H; subst; clear H
  end.

50
Local Hint Extern 0 (atomic _ _) => solve_atomic.
51 52
Local Hint Extern 0 (head_reducible _ _) => eexists _, _, _, _; simpl.
Local Hint Extern 0 (head_reducible_no_obs _ _) => eexists _, _, _; simpl.
53

54 55 56 57 58 59
(* [simpl apply] is too stupid, so we need extern hints here. *)
Local Hint Extern 1 (head_step _ _ _ _ _ _) => econstructor.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasSucS.
Local Hint Extern 0 (head_step (CAS _ _ _) _ _ _ _ _) => eapply CasFailS.
Local Hint Extern 0 (head_step (Alloc _) _ _ _ _ _) => apply alloc_fresh.
Local Hint Extern 0 (head_step NewProph _ _ _ _ _) => apply new_proph_fresh.
60
Local Hint Resolve to_of_val.
61

Ralf Jung's avatar
fix TWP  
Ralf Jung committed
62
Local Ltac solve_exec_safe := intros; subst; do 3 eexists; econstructor; eauto.
63
Local Ltac solve_exec_puredet := simpl; intros; by inv_head_step.
64
Local Ltac solve_pure_exec :=
65 66
  unfold IntoVal in *;
  repeat match goal with H : AsVal _ |- _ => destruct H as [??] end; subst;
67
  apply det_head_step_pure_exec; [ solve_exec_safe | solve_exec_puredet ].
68

69 70
Class AsRec (e : expr) (f x : binder) (erec : expr) :=
  as_rec : e = Rec f x erec.
71 72
Instance AsRec_rec f x e : AsRec (Rec f x e) f x e := eq_refl.
Instance AsRec_rec_locked_val v f x e :
73 74 75
  AsRec (of_val v) f x e  AsRec (of_val (locked v)) f x e.
Proof. by unlock. Qed.

76
Instance pure_rec f x (erec e1 e2 : expr)
Robbert Krebbers's avatar
Robbert Krebbers committed
77
    `{!AsVal e2, AsRec e1 f x erec, Closed (f :b: x :b: []) erec} :
78
  PureExec True (App e1 e2) (subst' x e2 (subst' f e1 erec)).
79
Proof. unfold AsRec in *; solve_pure_exec. Qed.
80

81
Instance pure_unop op e v v' `{!IntoVal e v} :
82
  PureExec (un_op_eval op v = Some v') (UnOp op e) (of_val v').
83
Proof. solve_pure_exec. Qed.
84

85
Instance pure_binop op e1 e2 v1 v2 v' `{!IntoVal e1 v1, !IntoVal e2 v2} :
86
  PureExec (bin_op_eval op v1 v2 = Some v') (BinOp op e1 e2) (of_val v').
87
Proof. solve_pure_exec. Qed.
88

89
Instance pure_if_true e1 e2 : PureExec True (If (Lit (LitBool true)) e1 e2) e1.
90
Proof. solve_pure_exec. Qed.
91

92
Instance pure_if_false e1 e2 : PureExec True (If (Lit (LitBool false)) e1 e2) e2.
93
Proof. solve_pure_exec. Qed.
94

95
Instance pure_fst e1 e2 v1 `{!IntoVal e1 v1, !AsVal e2} :
96
  PureExec True (Fst (Pair e1 e2)) e1.
97
Proof. solve_pure_exec. Qed.
98

99
Instance pure_snd e1 e2 v2 `{!AsVal e1, !IntoVal e2 v2} :
100
  PureExec True (Snd (Pair e1 e2)) e2.
101
Proof. solve_pure_exec. Qed.
102

103
Instance pure_case_inl e0 v e1 e2 `{!IntoVal e0 v} :
104
  PureExec True (Case (InjL e0) e1 e2) (App e1 e0).
105
Proof. solve_pure_exec. Qed.
106

107
Instance pure_case_inr e0 v e1 e2 `{!IntoVal e0 v} :
108
  PureExec True (Case (InjR e0) e1 e2) (App e2 e0).
109
Proof. solve_pure_exec. Qed.
110

111 112 113 114 115 116 117
Section lifting.
Context `{heapG Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
Implicit Types efs : list expr.
Implicit Types σ : state.

Ralf Jung's avatar
Ralf Jung committed
118
(** Fork: Not using Texan triples to avoid some unnecessary [True] *)
119
Lemma wp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
120
   WP e @ s;  {{ _, True }} -  Φ (LitV LitUnit) - WP Fork e @ s; E {{ Φ }}.
121
Proof.
Ralf Jung's avatar
Ralf Jung committed
122
  iIntros "He HΦ".
123
  iApply wp_lift_pure_det_head_step; [eauto|intros; inv_head_step; eauto|].
124 125
  iModIntro; iNext; iIntros "!> /= {$He}". by iApply wp_value.
Qed.
126

127
Lemma twp_fork s E e Φ :
Ralf Jung's avatar
Ralf Jung committed
128
  WP e @ s;  [{ _, True }] - Φ (LitV LitUnit) - WP Fork e @ s; E [{ Φ }].
129
Proof.
Ralf Jung's avatar
Ralf Jung committed
130
  iIntros "He HΦ".
131
  iApply twp_lift_pure_det_head_step; [eauto|intros; inv_head_step; eauto|].
132 133 134
  iIntros "!> /= {$He}". by iApply twp_value.
Qed.

135
(** Heap *)
136
Lemma wp_alloc s E e v :
Robbert Krebbers's avatar
Robbert Krebbers committed
137
  IntoVal e v 
138
  {{{ True }}} Alloc e @ s; E {{{ l, RET LitV (LitLoc l); l  v }}}.
139
Proof.
140
  iIntros (<- Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
141 142
  iIntros (σ1 κ κs) "[Hσ Hκs] !>"; iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
143 144 145
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
146 147 148 149
Lemma twp_alloc s E e v :
  IntoVal e v 
  [[{ True }]] Alloc e @ s; E [[{ l, RET LitV (LitLoc l); l  v }]].
Proof.
150
  iIntros (<- Φ) "_ HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
151
  iIntros (σ1 κs) "[Hσ Hκs] !>"; iSplit; first by eauto.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
152
  iIntros (κ v2 σ2 efs Hstep); inv_head_step.
153
  iMod (@gen_heap_alloc with "Hσ") as "[Hσ Hl]"; first done.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
154
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
155
Qed.
156

157 158
Lemma wp_load s E l q v :
  {{{  l {q} v }}} Load (Lit (LitLoc l)) @ s; E {{{ RET v; l {q} v }}}.
159 160
Proof.
  iIntros (Φ) ">Hl HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
161 162
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
163 164
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
165 166 167 168
Lemma twp_load s E l q v :
  [[{ l {q} v }]] Load (Lit (LitLoc l)) @ s; E [[{ RET v; l {q} v }]].
Proof.
  iIntros (Φ) "Hl HΦ". iApply twp_lift_atomic_head_step_no_fork; auto.
169
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
170
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
171
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
172
Qed.
173

174
Lemma wp_store s E l v' e v :
Robbert Krebbers's avatar
Robbert Krebbers committed
175
  IntoVal e v 
176
  {{{  l  v' }}} Store (Lit (LitLoc l)) e @ s; E {{{ RET LitV LitUnit; l  v }}}.
177
Proof.
178
  iIntros (<- Φ) ">Hl HΦ".
179
  iApply wp_lift_atomic_head_step_no_fork; auto.
180 181
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2 σ2 efs Hstep); inv_head_step.
182
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
183
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
184
Qed.
185 186 187 188
Lemma twp_store s E l v' e v :
  IntoVal e v 
  [[{ l  v' }]] Store (Lit (LitLoc l)) e @ s; E [[{ RET LitV LitUnit; l  v }]].
Proof.
189
  iIntros (<- Φ) "Hl HΦ".
190
  iApply twp_lift_atomic_head_step_no_fork; auto.
191
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
192
  iSplit; first by eauto. iIntros (κ v2 σ2 efs Hstep); inv_head_step.
193
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
194
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
195
Qed.
196

197
Lemma wp_cas_fail s E l q v' e1 v1 e2 :
Ralf Jung's avatar
Ralf Jung committed
198
  IntoVal e1 v1  AsVal e2  v'  v1  vals_cas_compare_safe v' v1 
199
  {{{  l {q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ s; E
200 201
  {{{ RET LitV (LitBool false); l {q} v' }}}.
Proof.
Ralf Jung's avatar
Ralf Jung committed
202
  iIntros (<- [v2 <-] ?? Φ) ">Hl HΦ".
203
  iApply wp_lift_atomic_head_step_no_fork; auto.
204 205
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
206 207
  iModIntro; iSplit=> //. iFrame. by iApply "HΦ".
Qed.
208
Lemma twp_cas_fail s E l q v' e1 v1 e2 :
Ralf Jung's avatar
Ralf Jung committed
209
  IntoVal e1 v1  AsVal e2  v'  v1  vals_cas_compare_safe v' v1 
210 211 212
  [[{ l {q} v' }]] CAS (Lit (LitLoc l)) e1 e2 @ s; E
  [[{ RET LitV (LitBool false); l {q} v' }]].
Proof.
Ralf Jung's avatar
Ralf Jung committed
213
  iIntros (<- [v2 <-] ?? Φ) "Hl HΦ".
214
  iApply twp_lift_atomic_head_step_no_fork; auto.
215
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
216 217
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
  iModIntro; iSplit=> //. iSplit; first done. iFrame. by iApply "HΦ".
218
Qed.
219

220
Lemma wp_cas_suc s E l e1 v1 e2 v2 :
Ralf Jung's avatar
Ralf Jung committed
221
  IntoVal e1 v1  IntoVal e2 v2  vals_cas_compare_safe v1 v1 
222
  {{{  l  v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ s; E
223 224
  {{{ RET LitV (LitBool true); l  v2 }}}.
Proof.
Ralf Jung's avatar
Ralf Jung committed
225
  iIntros (<- <- ? Φ) ">Hl HΦ".
226
  iApply wp_lift_atomic_head_step_no_fork; auto.
227 228
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
229
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
230
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
231
Qed.
232
Lemma twp_cas_suc s E l e1 v1 e2 v2 :
Ralf Jung's avatar
Ralf Jung committed
233
  IntoVal e1 v1  IntoVal e2 v2  vals_cas_compare_safe v1 v1 
234 235 236
  [[{ l  v1 }]] CAS (Lit (LitLoc l)) e1 e2 @ s; E
  [[{ RET LitV (LitBool true); l  v2 }]].
Proof.
Ralf Jung's avatar
Ralf Jung committed
237
  iIntros (<- <- ? Φ) "Hl HΦ".
238
  iApply twp_lift_atomic_head_step_no_fork; auto.
239
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
240
  iSplit; first by eauto. iIntros (κ v2' σ2 efs Hstep); inv_head_step.
241
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
242
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
243
Qed.
244

Ralf Jung's avatar
Ralf Jung committed
245
Lemma wp_faa s E l i1 e2 i2 :
246
  IntoVal e2 (LitV (LitInt i2)) 
Ralf Jung's avatar
Ralf Jung committed
247
  {{{  l  LitV (LitInt i1) }}} FAA (Lit (LitLoc l)) e2 @ s; E
248 249
  {{{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }}}.
Proof.
250
  iIntros (<- Φ) ">Hl HΦ".
251
  iApply wp_lift_atomic_head_step_no_fork; auto.
252 253
  iIntros (σ1 κ κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
  iSplit; first by eauto. iNext; iIntros (v2' σ2 efs Hstep); inv_head_step.
254
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
255
  iModIntro. iSplit=>//. iFrame. by iApply "HΦ".
256
Qed.
257 258 259 260 261
Lemma twp_faa s E l i1 e2 i2 :
  IntoVal e2 (LitV (LitInt i2)) 
  [[{ l  LitV (LitInt i1) }]] FAA (Lit (LitLoc l)) e2 @ s; E
  [[{ RET LitV (LitInt i1); l  LitV (LitInt (i1 + i2)) }]].
Proof.
262
  iIntros (<- Φ) "Hl HΦ".
263
  iApply twp_lift_atomic_head_step_no_fork; auto.
264
  iIntros (σ1 κs) "[Hσ Hκs] !>". iDestruct (@gen_heap_valid with "Hσ Hl") as %?.
265
  iSplit; first by eauto. iIntros (κ e2 σ2 efs Hstep); inv_head_step.
266
  iMod (@gen_heap_update with "Hσ Hl") as "[$ Hl]".
Ralf Jung's avatar
fix TWP  
Ralf Jung committed
267
  iModIntro. iSplit=>//. iSplit; first done. iFrame. by iApply "HΦ".
268
Qed.
269 270 271

(** Lifting lemmas for creating and resolving prophecy variables *)
Lemma wp_new_proph :
Ralf Jung's avatar
Ralf Jung committed
272
  {{{ True }}} NewProph {{{ v (p : proph), RET (LitV (LitProphecy p)); p  v }}}.
273 274
Proof.
  iIntros (Φ) "_ HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
275 276 277 278
  iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR".
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep). inv_head_step.
  iMod (@proph_map_alloc with "HR") as "[HR Hp]".
279 280 281 282 283 284
  { intro Hin. apply (iffLR (elem_of_subseteq _ _) Hdom) in Hin. done. }
  iModIntro; iSplit=> //. iFrame. iSplitL "HR".
  - iExists _. iSplit; last done.
    iPureIntro. split.
    + apply first_resolve_insert; auto.
    + rewrite dom_insert_L. by apply union_mono_l.
Ralf Jung's avatar
Ralf Jung committed
285
  - iApply "HΦ". done.
286 287 288 289 290 291 292 293 294
Qed.

Lemma wp_resolve_proph e1 e2 p v w:
  IntoVal e1 (LitV (LitProphecy p)) 
  IntoVal e2 w 
  {{{ p  v }}} ResolveProph e1 e2 {{{ RET (LitV LitUnit); v = Some w }}}.
Proof.
  iIntros (<- <- Φ) "Hp HΦ". iApply wp_lift_atomic_head_step_no_fork; auto.
  unfold cons_obs. simpl.
295 296 297 298
  iIntros (σ1 κ κs) "[Hσ HR] !>". iDestruct "HR" as (R [Hfr Hdom]) "HR".
  iDestruct (@proph_map_valid with "HR Hp") as %Hlookup.
  iSplit; first by eauto.
  iNext; iIntros (v2 σ2 efs Hstep); inv_head_step. iApply fupd_frame_l.
299
  iSplit=> //. iFrame.
Ralf Jung's avatar
Ralf Jung committed
300
  iMod (@proph_map_remove with "HR Hp") as "Hp". iModIntro.
301 302 303 304 305 306
  iSplitR "HΦ".
  - iExists _. iFrame. iPureIntro. split; first by eapply first_resolve_delete.
    rewrite dom_delete. rewrite <- difference_empty_L. by eapply difference_mono.
  - iApply "HΦ". iPureIntro. by eapply first_resolve_eq.
Qed.

Ralf Jung's avatar
Ralf Jung committed
307
End lifting.