primitive.v 24.9 KB
Newer Older
1
2
From iris.base_logic Require Export upred.
From iris.algebra Require Export updates.
3
Set Default Proof Using "Type".
4
5
6
7
8
9
10
11
Local Hint Extern 1 (_  _) => etrans; [eassumption|].
Local Hint Extern 1 (_  _) => etrans; [|eassumption].
Local Hint Extern 10 (_  _) => omega.

(** logical connectives *)
Program Definition uPred_pure_def {M} (φ : Prop) : uPred M :=
  {| uPred_holds n x := φ |}.
Solve Obligations with done.
12
13
Definition uPred_pure_aux : seal (@uPred_pure_def). by eexists. Qed.
Definition uPred_pure {M} := unseal uPred_pure_aux M.
14
Definition uPred_pure_eq :
15
  @uPred_pure = @uPred_pure_def := seal_eq uPred_pure_aux.
16
17
18
19
20
21

Instance uPred_inhabited M : Inhabited (uPred M) := populate (uPred_pure True).

Program Definition uPred_and_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
22
23
24
Definition uPred_and_aux : seal (@uPred_and_def). by eexists. Qed.
Definition uPred_and {M} := unseal uPred_and_aux M.
Definition uPred_and_eq: @uPred_and = @uPred_and_def := seal_eq uPred_and_aux.
25
26
27
28

Program Definition uPred_or_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x := P n x  Q n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
29
30
31
Definition uPred_or_aux : seal (@uPred_or_def). by eexists. Qed.
Definition uPred_or {M} := unseal uPred_or_aux M.
Definition uPred_or_eq: @uPred_or = @uPred_or_def := seal_eq uPred_or_aux.
32
33
34
35
36
37
38
39
40
41

Program Definition uPred_impl_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  n' x',
       x  x'  n'  n  {n'} x'  P n' x'  Q n' x' |}.
Next Obligation.
  intros M P Q n1 x1 x1' HPQ [x2 Hx1'] n2 x3 [x4 Hx3] ?; simpl in *.
  rewrite Hx3 (dist_le _ _ _ _ Hx1'); auto. intros ??.
  eapply HPQ; auto. exists (x2  x4); by rewrite assoc.
Qed.
Next Obligation. intros M P Q [|n1] [|n2] x; auto with lia. Qed.
42
43
Definition uPred_impl_aux : seal (@uPred_impl_def). by eexists. Qed.
Definition uPred_impl {M} := unseal uPred_impl_aux M.
44
Definition uPred_impl_eq :
45
  @uPred_impl = @uPred_impl_def := seal_eq uPred_impl_aux.
46
47
48
49

Program Definition uPred_forall_def {M A} (Ψ : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, Ψ a n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
50
51
Definition uPred_forall_aux : seal (@uPred_forall_def). by eexists. Qed.
Definition uPred_forall {M A} := unseal uPred_forall_aux M A.
52
Definition uPred_forall_eq :
53
  @uPred_forall = @uPred_forall_def := seal_eq uPred_forall_aux.
54
55
56
57

Program Definition uPred_exist_def {M A} (Ψ : A  uPred M) : uPred M :=
  {| uPred_holds n x :=  a, Ψ a n x |}.
Solve Obligations with naive_solver eauto 2 with uPred_def.
58
59
60
Definition uPred_exist_aux : seal (@uPred_exist_def). by eexists. Qed.
Definition uPred_exist {M A} := unseal uPred_exist_aux M A.
Definition uPred_exist_eq: @uPred_exist = @uPred_exist_def := seal_eq uPred_exist_aux.
61

62
Program Definition uPred_internal_eq_def {M} {A : ofeT} (a1 a2 : A) : uPred M :=
63
64
  {| uPred_holds n x := a1 {n} a2 |}.
Solve Obligations with naive_solver eauto 2 using (dist_le (A:=A)).
65
66
Definition uPred_internal_eq_aux : seal (@uPred_internal_eq_def). by eexists. Qed.
Definition uPred_internal_eq {M A} := unseal uPred_internal_eq_aux M A.
67
Definition uPred_internal_eq_eq:
68
  @uPred_internal_eq = @uPred_internal_eq_def := seal_eq uPred_internal_eq_aux.
69
70
71
72
73
74
75
76
77
78

Program Definition uPred_sep_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  x1 x2, x {n} x1  x2  P n x1  Q n x2 |}.
Next Obligation.
  intros M P Q n x y (x1&x2&Hx&?&?) [z Hy].
  exists x1, (x2  z); split_and?; eauto using uPred_mono, cmra_includedN_l.
  by rewrite Hy Hx assoc.
Qed.
Next Obligation.
  intros M P Q n1 n2 x (x1&x2&Hx&?&?) ?; rewrite {1}(dist_le _ _ _ _ Hx) // =>?.
79
  exists x1, x2; ofe_subst; split_and!;
80
81
    eauto using dist_le, uPred_closed, cmra_validN_op_l, cmra_validN_op_r.
Qed.
82
83
84
Definition uPred_sep_aux : seal (@uPred_sep_def). by eexists. Qed.
Definition uPred_sep {M} := unseal uPred_sep_aux M.
Definition uPred_sep_eq: @uPred_sep = @uPred_sep_def := seal_eq uPred_sep_aux.
85
86
87
88
89
90
91
92
93
94

Program Definition uPred_wand_def {M} (P Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  n' x',
       n'  n  {n'} (x  x')  P n' x'  Q n' (x  x') |}.
Next Obligation.
  intros M P Q n x1 x1' HPQ ? n3 x3 ???; simpl in *.
  apply uPred_mono with (x1  x3);
    eauto using cmra_validN_includedN, cmra_monoN_r, cmra_includedN_le.
Qed.
Next Obligation. naive_solver. Qed.
95
96
Definition uPred_wand_aux : seal (@uPred_wand_def). by eexists. Qed.
Definition uPred_wand {M} := unseal uPred_wand_aux M.
97
Definition uPred_wand_eq :
98
  @uPred_wand = @uPred_wand_def := seal_eq uPred_wand_aux.
99
100
101
102
103
104
105

Program Definition uPred_always_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := P n (core x) |}.
Next Obligation.
  intros M; naive_solver eauto using uPred_mono, @cmra_core_monoN.
Qed.
Next Obligation. naive_solver eauto using uPred_closed, @cmra_core_validN. Qed.
106
107
Definition uPred_always_aux : seal (@uPred_always_def). by eexists. Qed.
Definition uPred_always {M} := unseal uPred_always_aux M.
108
Definition uPred_always_eq :
109
  @uPred_always = @uPred_always_def := seal_eq uPred_always_aux.
110
111
112
113
114
115
116
117
118

Program Definition uPred_later_def {M} (P : uPred M) : uPred M :=
  {| uPred_holds n x := match n return _ with 0 => True | S n' => P n' x end |}.
Next Obligation.
  intros M P [|n] x1 x2; eauto using uPred_mono, cmra_includedN_S.
Qed.
Next Obligation.
  intros M P [|n1] [|n2] x; eauto using uPred_closed, cmra_validN_S with lia.
Qed.
119
120
Definition uPred_later_aux : seal (@uPred_later_def). by eexists. Qed.
Definition uPred_later {M} := unseal uPred_later_aux M.
121
Definition uPred_later_eq :
122
  @uPred_later = @uPred_later_def := seal_eq uPred_later_aux.
123
124
125
126
127
128
129
130

Program Definition uPred_ownM_def {M : ucmraT} (a : M) : uPred M :=
  {| uPred_holds n x := a {n} x |}.
Next Obligation.
  intros M a n x1 x [a' Hx1] [x2 ->].
  exists (a'  x2). by rewrite (assoc op) Hx1.
Qed.
Next Obligation. naive_solver eauto using cmra_includedN_le. Qed.
131
132
Definition uPred_ownM_aux : seal (@uPred_ownM_def). by eexists. Qed.
Definition uPred_ownM {M} := unseal uPred_ownM_aux M.
133
Definition uPred_ownM_eq :
134
  @uPred_ownM = @uPred_ownM_def := seal_eq uPred_ownM_aux.
135
136
137
138

Program Definition uPred_cmra_valid_def {M} {A : cmraT} (a : A) : uPred M :=
  {| uPred_holds n x := {n} a |}.
Solve Obligations with naive_solver eauto 2 using cmra_validN_le.
139
140
Definition uPred_cmra_valid_aux : seal (@uPred_cmra_valid_def). by eexists. Qed.
Definition uPred_cmra_valid {M A} := unseal uPred_cmra_valid_aux M A.
141
Definition uPred_cmra_valid_eq :
142
  @uPred_cmra_valid = @uPred_cmra_valid_def := seal_eq uPred_cmra_valid_aux.
143
144
145
146
147
148
149
150
151
152
153
154

Program Definition uPred_bupd_def {M} (Q : uPred M) : uPred M :=
  {| uPred_holds n x :=  k yf,
      k  n  {k} (x  yf)   x', {k} (x'  yf)  Q k x' |}.
Next Obligation.
  intros M Q n x1 x2 HQ [x3 Hx] k yf Hk.
  rewrite (dist_le _ _ _ _ Hx); last lia. intros Hxy.
  destruct (HQ k (x3  yf)) as (x'&?&?); [auto|by rewrite assoc|].
  exists (x'  x3); split; first by rewrite -assoc.
  apply uPred_mono with x'; eauto using cmra_includedN_l.
Qed.
Next Obligation. naive_solver. Qed.
155
156
157
Definition uPred_bupd_aux : seal (@uPred_bupd_def). by eexists. Qed.
Definition uPred_bupd {M} := unseal uPred_bupd_aux M.
Definition uPred_bupd_eq : @uPred_bupd = @uPred_bupd_def := seal_eq uPred_bupd_aux.
158

Ralf Jung's avatar
Ralf Jung committed
159
160
161
(* Latest notation *)
Notation "'⌜' φ '⌝'" := (uPred_pure φ%C%type)
  (at level 1, φ at level 200, format "⌜ φ ⌝") : uPred_scope.
162
163
164
165
166
167
168
Notation "'False'" := (uPred_pure False) : uPred_scope.
Notation "'True'" := (uPred_pure True) : uPred_scope.
Infix "∧" := uPred_and : uPred_scope.
Notation "(∧)" := uPred_and (only parsing) : uPred_scope.
Infix "∨" := uPred_or : uPred_scope.
Notation "(∨)" := uPred_or (only parsing) : uPred_scope.
Infix "→" := uPred_impl : uPred_scope.
169
170
171
Infix "∗" := uPred_sep (at level 80, right associativity) : uPred_scope.
Notation "(∗)" := uPred_sep (only parsing) : uPred_scope.
Notation "P -∗ Q" := (uPred_wand P Q)
172
173
  (at level 99, Q at level 200, right associativity) : uPred_scope.
Notation "∀ x .. y , P" :=
174
175
  (uPred_forall (λ x, .. (uPred_forall (λ y, P)) ..)%I)
  (at level 200, x binder, y binder, right associativity) : uPred_scope.
176
Notation "∃ x .. y , P" :=
177
178
  (uPred_exist (λ x, .. (uPred_exist (λ y, P)) ..)%I)
  (at level 200, x binder, y binder, right associativity) : uPred_scope.
179
180
181
182
Notation "□ P" := (uPred_always P)
  (at level 20, right associativity) : uPred_scope.
Notation "▷ P" := (uPred_later P)
  (at level 20, right associativity) : uPred_scope.
183
Infix "≡" := uPred_internal_eq : uPred_scope.
184
185
186
Notation "✓ x" := (uPred_cmra_valid x) (at level 20) : uPred_scope.
Notation "|==> Q" := (uPred_bupd Q)
  (at level 99, Q at level 200, format "|==>  Q") : uPred_scope.
187
Notation "P ==∗ Q" := (P  |==> Q)
188
  (at level 99, Q at level 200, only parsing) : C_scope.
189
190
Notation "P ==∗ Q" := (P - |==> Q)%I
  (at level 99, Q at level 200, format "P  ==∗  Q") : uPred_scope.
191

192
193
Coercion uPred_valid {M} (P : uPred M) : Prop := True%I  P.
Notation "P -∗ Q" := (P  Q)
194
  (at level 99, Q at level 200, right associativity) : C_scope.
195

196
Module uPred.
197
Definition unseal_eqs :=
198
  (uPred_pure_eq, uPred_and_eq, uPred_or_eq, uPred_impl_eq, uPred_forall_eq,
199
  uPred_exist_eq, uPred_internal_eq_eq, uPred_sep_eq, uPred_wand_eq, uPred_always_eq,
200
  uPred_later_eq, uPred_ownM_eq, uPred_cmra_valid_eq, uPred_bupd_eq).
201
Ltac unseal := rewrite !unseal_eqs /=.
202
203
204
205
206
207
208
209
210
211
212
213

Section primitive.
Context {M : ucmraT}.
Implicit Types φ : Prop.
Implicit Types P Q : uPred M.
Implicit Types A : Type.
Notation "P ⊢ Q" := (@uPred_entails M P%I Q%I). (* Force implicit argument M *)
Notation "P ⊣⊢ Q" := (equiv (A:=uPred M) P%I Q%I). (* Force implicit argument M *)
Arguments uPred_holds {_} !_ _ _ /.
Hint Immediate uPred_in_entails.

(** Non-expansiveness and setoid morphisms *)
214
Global Instance pure_proper : Proper (iff ==> ()) (@uPred_pure M) | 0.
215
Proof. intros φ1 φ2 Hφ. by unseal; split=> -[|n] ?; try apply Hφ. Qed.
216
217
218
Global Instance pure_ne n : Proper (iff ==> dist n) (@uPred_pure M) | 1.
Proof. by intros φ1 φ2 ->. Qed.

219
Global Instance and_ne : NonExpansive2 (@uPred_and M).
220
Proof.
221
  intros n P P' HP Q Q' HQ; unseal; split=> x n' ??.
222
223
224
225
  split; (intros [??]; split; [by apply HP|by apply HQ]).
Qed.
Global Instance and_proper :
  Proper (() ==> () ==> ()) (@uPred_and M) := ne_proper_2 _.
226
Global Instance or_ne : NonExpansive2 (@uPred_or M).
227
Proof.
228
  intros n P P' HP Q Q' HQ; split=> x n' ??.
229
230
231
232
  unseal; split; (intros [?|?]; [left; by apply HP|right; by apply HQ]).
Qed.
Global Instance or_proper :
  Proper (() ==> () ==> ()) (@uPred_or M) := ne_proper_2 _.
233
234
Global Instance impl_ne :
  NonExpansive2 (@uPred_impl M).
235
Proof.
236
  intros n P P' HP Q Q' HQ; split=> x n' ??.
237
238
239
240
  unseal; split; intros HPQ x' n'' ????; apply HQ, HPQ, HP; auto.
Qed.
Global Instance impl_proper :
  Proper (() ==> () ==> ()) (@uPred_impl M) := ne_proper_2 _.
241
Global Instance sep_ne : NonExpansive2 (@uPred_sep M).
242
Proof.
243
  intros n P P' HP Q Q' HQ; split=> n' x ??.
244
  unseal; split; intros (x1&x2&?&?&?); ofe_subst x;
245
246
247
248
249
    exists x1, x2; split_and!; try (apply HP || apply HQ);
    eauto using cmra_validN_op_l, cmra_validN_op_r.
Qed.
Global Instance sep_proper :
  Proper (() ==> () ==> ()) (@uPred_sep M) := ne_proper_2 _.
250
251
Global Instance wand_ne :
  NonExpansive2 (@uPred_wand M).
252
Proof.
253
  intros n P P' HP Q Q' HQ; split=> n' x ??; unseal; split; intros HPQ x' n'' ???;
254
255
256
257
    apply HQ, HPQ, HP; eauto using cmra_validN_op_r.
Qed.
Global Instance wand_proper :
  Proper (() ==> () ==> ()) (@uPred_wand M) := ne_proper_2 _.
258
259
Global Instance internal_eq_ne (A : ofeT) :
  NonExpansive2 (@uPred_internal_eq M A).
260
Proof.
261
  intros n x x' Hx y y' Hy; split=> n' z; unseal; split; intros; simpl in *.
262
263
264
  - by rewrite -(dist_le _ _ _ _ Hx) -?(dist_le _ _ _ _ Hy); auto.
  - by rewrite (dist_le _ _ _ _ Hx) ?(dist_le _ _ _ _ Hy); auto.
Qed.
265
Global Instance internal_eq_proper (A : ofeT) :
266
  Proper (() ==> () ==> ()) (@uPred_internal_eq M A) := ne_proper_2 _.
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
Global Instance forall_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_forall M A).
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.
Global Instance forall_proper A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_forall M A).
Proof.
  by intros Ψ1 Ψ2 HΨ; unseal; split=> n' x; split; intros HP a; apply HΨ.
Qed.
Global Instance exist_ne A n :
  Proper (pointwise_relation _ (dist n) ==> dist n) (@uPred_exist M A).
Proof.
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ??; split; intros [a ?]; exists a; by apply HΨ.
Qed.
Global Instance exist_proper A :
  Proper (pointwise_relation _ () ==> ()) (@uPred_exist M A).
Proof.
  intros Ψ1 Ψ2 HΨ.
  unseal; split=> n' x ?; split; intros [a ?]; exists a; by apply HΨ.
Qed.
Global Instance later_contractive : Contractive (@uPred_later M).
Proof.
291
292
  unseal; intros [|n] P Q HPQ; split=> -[|n'] x ?? //=; try omega.
  apply HPQ; eauto using cmra_validN_S.
293
294
295
Qed.
Global Instance later_proper' :
  Proper (() ==> ()) (@uPred_later M) := ne_proper _.
296
Global Instance always_ne : NonExpansive (@uPred_always M).
297
Proof.
298
  intros n P1 P2 HP.
299
300
301
302
  unseal; split=> n' x; split; apply HP; eauto using @cmra_core_validN.
Qed.
Global Instance always_proper :
  Proper (() ==> ()) (@uPred_always M) := ne_proper _.
303
Global Instance ownM_ne : NonExpansive (@uPred_ownM M).
304
Proof.
305
  intros n a b Ha.
306
307
308
  unseal; split=> n' x ? /=. by rewrite (dist_le _ _ _ _ Ha); last lia.
Qed.
Global Instance ownM_proper: Proper (() ==> ()) (@uPred_ownM M) := ne_proper _.
309
310
Global Instance cmra_valid_ne {A : cmraT} :
  NonExpansive (@uPred_cmra_valid M A).
311
Proof.
312
  intros n a b Ha; unseal; split=> n' x ? /=.
313
314
315
316
  by rewrite (dist_le _ _ _ _ Ha); last lia.
Qed.
Global Instance cmra_valid_proper {A : cmraT} :
  Proper (() ==> ()) (@uPred_cmra_valid M A) := ne_proper _.
317
Global Instance bupd_ne : NonExpansive (@uPred_bupd M).
318
Proof.
319
  intros n P Q HPQ.
320
321
322
323
324
  unseal; split=> n' x; split; intros HP k yf ??;
    destruct (HP k yf) as (x'&?&?); auto;
    exists x'; split; auto; apply HPQ; eauto using cmra_validN_op_l.
Qed.
Global Instance bupd_proper : Proper (() ==> ()) (@uPred_bupd M) := ne_proper _.
325
326
327
328
Global Instance uPred_valid_proper : Proper (() ==> iff) (@uPred_valid M).
Proof. solve_proper. Qed.
Global Instance uPred_valid_mono : Proper (() ==> impl) (@uPred_valid M).
Proof. solve_proper. Qed.
329
330
331
Global Instance uPred_valid_flip_mono :
  Proper (flip () ==> flip impl) (@uPred_valid M).
Proof. solve_proper. Qed.
332
333

(** Introduction and elimination rules *)
Ralf Jung's avatar
Ralf Jung committed
334
Lemma pure_intro φ P : φ  P  ⌜φ⌝.
335
Proof. by intros ?; unseal; split. Qed.
336
Lemma pure_elim' φ P : (φ  True  P)  ⌜φ⌝  P.
337
Proof. unseal; intros HP; split=> n x ??. by apply HP. Qed.
Ralf Jung's avatar
Ralf Jung committed
338
Lemma pure_forall_2 {A} (φ : A  Prop) : ( x : A, ⌜φ x)   x : A, φ x.
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
Proof. by unseal. Qed.

Lemma and_elim_l P Q : P  Q  P.
Proof. by unseal; split=> n x ? [??]. Qed.
Lemma and_elim_r P Q : P  Q  Q.
Proof. by unseal; split=> n x ? [??]. Qed.
Lemma and_intro P Q R : (P  Q)  (P  R)  P  Q  R.
Proof. intros HQ HR; unseal; split=> n x ??; by split; [apply HQ|apply HR]. Qed.

Lemma or_intro_l P Q : P  P  Q.
Proof. unseal; split=> n x ??; left; auto. Qed.
Lemma or_intro_r P Q : Q  P  Q.
Proof. unseal; split=> n x ??; right; auto. Qed.
Lemma or_elim P Q R : (P  R)  (Q  R)  P  Q  R.
Proof. intros HP HQ; unseal; split=> n x ? [?|?]. by apply HP. by apply HQ. Qed.

Lemma impl_intro_r P Q R : (P  Q  R)  P  Q  R.
Proof.
  unseal; intros HQ; split=> n x ?? n' x' ????. apply HQ;
    naive_solver eauto using uPred_mono, uPred_closed, cmra_included_includedN.
Qed.
Lemma impl_elim P Q R : (P  Q  R)  (P  Q)  P  R.
Proof. by unseal; intros HP HP'; split=> n x ??; apply HP with n x, HP'. Qed.

Lemma forall_intro {A} P (Ψ : A  uPred M): ( a, P  Ψ a)  P   a, Ψ a.
Proof. unseal; intros HPΨ; split=> n x ?? a; by apply HPΨ. Qed.
Lemma forall_elim {A} {Ψ : A  uPred M} a : ( a, Ψ a)  Ψ a.
Proof. unseal; split=> n x ? HP; apply HP. Qed.

Lemma exist_intro {A} {Ψ : A  uPred M} a : Ψ a   a, Ψ a.
Proof. unseal; split=> n x ??; by exists a. Qed.
Lemma exist_elim {A} (Φ : A  uPred M) Q : ( a, Φ a  Q)  ( a, Φ a)  Q.
Proof. unseal; intros HΦΨ; split=> n x ? [a ?]; by apply HΦΨ with a. Qed.

373
Lemma internal_eq_refl {A : ofeT} (a : A) : uPred_valid (M:=M) (a  a).
374
Proof. unseal; by split=> n x ??; simpl. Qed.
375
Lemma internal_eq_rewrite {A : ofeT} a b (Ψ : A  uPred M) P
376
  {HΨ : NonExpansive Ψ} : (P  a  b)  (P  Ψ a)  P  Ψ b.
377
378
379
380
381
382
383
Proof.
  unseal; intros Hab Ha; split=> n x ??. apply HΨ with n a; auto.
  - by symmetry; apply Hab with x.
  - by apply Ha.
Qed.

(* BI connectives *)
384
Lemma sep_mono P P' Q Q' : (P  Q)  (P'  Q')  P  P'  Q  Q'.
385
386
Proof.
  intros HQ HQ'; unseal.
387
  split; intros n' x ? (x1&x2&?&?&?); exists x1,x2; ofe_subst x;
388
389
    eauto 7 using cmra_validN_op_l, cmra_validN_op_r, uPred_in_entails.
Qed.
390
Lemma True_sep_1 P : P  True  P.
391
392
393
Proof.
  unseal; split; intros n x ??. exists (core x), x. by rewrite cmra_core_l.
Qed.
394
Lemma True_sep_2 P : True  P  P.
395
Proof.
396
  unseal; split; intros n x ? (x1&x2&?&_&?); ofe_subst;
397
398
    eauto using uPred_mono, cmra_includedN_r.
Qed.
399
Lemma sep_comm' P Q : P  Q  Q  P.
400
401
402
Proof.
  unseal; split; intros n x ? (x1&x2&?&?&?); exists x2, x1; by rewrite (comm op).
Qed.
403
Lemma sep_assoc' P Q R : (P  Q)  R  P  (Q  R).
404
405
406
407
408
409
Proof.
  unseal; split; intros n x ? (x1&x2&Hx&(y1&y2&Hy&?&?)&?).
  exists y1, (y2  x2); split_and?; auto.
  + by rewrite (assoc op) -Hy -Hx.
  + by exists y2, x2.
Qed.
410
Lemma wand_intro_r P Q R : (P  Q  R)  P  Q - R.
411
412
413
414
415
Proof.
  unseal=> HPQR; split=> n x ?? n' x' ???; apply HPQR; auto.
  exists x, x'; split_and?; auto.
  eapply uPred_closed with n; eauto using cmra_validN_op_l.
Qed.
416
Lemma wand_elim_l' P Q R : (P  Q - R)  P  Q  R.
417
Proof.
418
  unseal =>HPQR. split; intros n x ? (?&?&?&?&?). ofe_subst.
419
420
421
422
423
424
425
426
427
428
429
  eapply HPQR; eauto using cmra_validN_op_l.
Qed.

(* Always *)
Lemma always_mono P Q : (P  Q)   P   Q.
Proof. intros HP; unseal; split=> n x ? /=. by apply HP, cmra_core_validN. Qed.
Lemma always_elim P :  P  P.
Proof.
  unseal; split=> n x ? /=.
  eauto using uPred_mono, @cmra_included_core, cmra_included_includedN.
Qed.
430
Lemma always_idemp_2 P :  P    P.
431
432
Proof. unseal; split=> n x ?? /=. by rewrite cmra_core_idemp. Qed.

Ralf Jung's avatar
Ralf Jung committed
433
Lemma always_pure_2 φ : ⌜φ⌝   ⌜φ⌝.
434
435
436
437
438
439
Proof. by unseal. Qed.
Lemma always_forall_2 {A} (Ψ : A  uPred M) : ( a,  Ψ a)  (  a, Ψ a).
Proof. by unseal. Qed.
Lemma always_exist_1 {A} (Ψ : A  uPred M) : (  a, Ψ a)  ( a,  Ψ a).
Proof. by unseal. Qed.

440
Lemma always_and_sep_l_1 P Q :  P  Q   P  Q.
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
Proof.
  unseal; split=> n x ? [??]; exists (core x), x; simpl in *.
  by rewrite cmra_core_l cmra_core_idemp.
Qed.

(* Later *)
Lemma later_mono P Q : (P  Q)   P   Q.
Proof.
  unseal=> HP; split=>-[|n] x ??; [done|apply HP; eauto using cmra_validN_S].
Qed.
Lemma löb P : ( P  P)  P.
Proof.
  unseal; split=> n x ? HP; induction n as [|n IH]; [by apply HP|].
  apply HP, IH, uPred_closed with (S n); eauto using cmra_validN_S.
Qed.
Lemma later_forall_2 {A} (Φ : A  uPred M) : ( a,  Φ a)    a, Φ a.
Proof. unseal; by split=> -[|n] x. Qed.
Lemma later_exist_false {A} (Φ : A  uPred M) :
  (  a, Φ a)   False  ( a,  Φ a).
Proof. unseal; split=> -[|[|n]] x /=; eauto. Qed.
461
Lemma later_sep P Q :  (P  Q)   P   Q.
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
Proof.
  unseal; split=> n x ?; split.
  - destruct n as [|n]; simpl.
    { by exists x, (core x); rewrite cmra_core_r. }
    intros (x1&x2&Hx&?&?); destruct (cmra_extend n x x1 x2)
      as (y1&y2&Hx'&Hy1&Hy2); eauto using cmra_validN_S; simpl in *.
    exists y1, y2; split; [by rewrite Hx'|by rewrite Hy1 Hy2].
  - destruct n as [|n]; simpl; [done|intros (x1&x2&Hx&?&?)].
    exists x1, x2; eauto using dist_S.
Qed.
Lemma later_false_excluded_middle P :  P   False  ( False  P).
Proof.
  unseal; split=> -[|n] x ? /= HP; [by left|right].
  intros [|n'] x' ????; [|done].
  eauto using uPred_closed, uPred_mono, cmra_included_includedN.
Qed.
Lemma always_later P :   P    P.
Proof. by unseal. Qed.

(* Own *)
Lemma ownM_op (a1 a2 : M) :
483
  uPred_ownM (a1  a2)  uPred_ownM a1  uPred_ownM a2.
484
485
486
487
488
489
490
491
492
493
494
495
Proof.
  unseal; split=> n x ?; split.
  - intros [z ?]; exists a1, (a2  z); split; [by rewrite (assoc op)|].
    split. by exists (core a1); rewrite cmra_core_r. by exists z.
  - intros (y1&y2&Hx&[z1 Hy1]&[z2 Hy2]); exists (z1  z2).
    by rewrite (assoc op _ z1) -(comm op z1) (assoc op z1)
      -(assoc op _ a2) (comm op z1) -Hy1 -Hy2.
Qed.
Lemma always_ownM_core (a : M) : uPred_ownM a   uPred_ownM (core a).
Proof.
  split=> n x /=; unseal; intros Hx. simpl. by apply cmra_core_monoN.
Qed.
496
Lemma ownM_empty : uPred_valid (M:=M) (uPred_ownM ).
497
498
499
500
501
502
503
504
505
506
507
508
Proof. unseal; split=> n x ??; by  exists x; rewrite left_id. Qed.
Lemma later_ownM a :  uPred_ownM a   b, uPred_ownM b   (a  b).
Proof.
  unseal; split=> -[|n] x /= ? Hax; first by eauto using ucmra_unit_leastN.
  destruct Hax as [y ?].
  destruct (cmra_extend n x a y) as (a'&y'&Hx&?&?); auto using cmra_validN_S.
  exists a'. rewrite Hx. eauto using cmra_includedN_l.
Qed.

(* Valid *)
Lemma ownM_valid (a : M) : uPred_ownM a   a.
Proof.
509
  unseal; split=> n x Hv [a' ?]; ofe_subst; eauto using cmra_validN_op_l.
510
Qed.
511
Lemma cmra_valid_intro {A : cmraT} (a : A) :  a  uPred_valid (M:=M) ( a).
512
513
514
515
516
517
518
519
520
Proof. unseal=> ?; split=> n x ? _ /=; by apply cmra_valid_validN. Qed.
Lemma cmra_valid_elim {A : cmraT} (a : A) : ¬ {0} a   a  False.
Proof. unseal=> Ha; split=> n x ??; apply Ha, cmra_validN_le with n; auto. Qed.
Lemma always_cmra_valid_1 {A : cmraT} (a : A) :  a    a.
Proof. by unseal. Qed.
Lemma cmra_valid_weaken {A : cmraT} (a b : A) :  (a  b)   a.
Proof. unseal; split=> n x _; apply cmra_validN_op_l. Qed.

(* Basic update modality *)
521
Lemma bupd_intro P : P == P.
522
523
524
525
Proof.
  unseal. split=> n x ? HP k yf ?; exists x; split; first done.
  apply uPred_closed with n; eauto using cmra_validN_op_l.
Qed.
526
Lemma bupd_mono P Q : (P  Q)  (|==> P) == Q.
527
528
529
530
531
Proof.
  unseal. intros HPQ; split=> n x ? HP k yf ??.
  destruct (HP k yf) as (x'&?&?); eauto.
  exists x'; split; eauto using uPred_in_entails, cmra_validN_op_l.
Qed.
532
Lemma bupd_trans P : (|==> |==> P) == P.
533
Proof. unseal; split; naive_solver. Qed.
534
Lemma bupd_frame_r P R : (|==> P)  R == P  R.
535
536
537
538
539
540
541
542
543
Proof.
  unseal; split; intros n x ? (x1&x2&Hx&HP&?) k yf ??.
  destruct (HP k (x2  yf)) as (x'&?&?); eauto.
  { by rewrite assoc -(dist_le _ _ _ _ Hx); last lia. }
  exists (x'  x2); split; first by rewrite -assoc.
  exists x', x2; split_and?; auto.
  apply uPred_closed with n; eauto 3 using cmra_validN_op_l, cmra_validN_op_r.
Qed.
Lemma bupd_ownM_updateP x (Φ : M  Prop) :
Ralf Jung's avatar
Ralf Jung committed
544
  x ~~>: Φ  uPred_ownM x ==  y, ⌜Φ y  uPred_ownM y.
545
546
547
548
549
550
551
552
553
Proof.
  unseal=> Hup; split=> n x2 ? [x3 Hx] k yf ??.
  destruct (Hup k (Some (x3  yf))) as (y&?&?); simpl in *.
  { rewrite /= assoc -(dist_le _ _ _ _ Hx); auto. }
  exists (y  x3); split; first by rewrite -assoc.
  exists y; eauto using cmra_includedN_l.
Qed.

(* Products *)
554
Lemma prod_equivI {A B : ofeT} (x y : A * B) : x  y  x.1  y.1  x.2  y.2.
555
556
557
558
Proof. by unseal. Qed.
Lemma prod_validI {A B : cmraT} (x : A * B) :  x   x.1   x.2.
Proof. by unseal. Qed.

559
(* Type-level Later *)
560
Lemma later_equivI {A : ofeT} (x y : A) : Next x  Next y   (x  y).
561
562
563
Proof. by unseal. Qed.

(* Discrete *)
Ralf Jung's avatar
Ralf Jung committed
564
Lemma discrete_valid {A : cmraT} `{!CMRADiscrete A} (a : A) :  a  ⌜✓ a.
565
Proof. unseal; split=> n x _. by rewrite /= -cmra_discrete_valid_iff. Qed.
Ralf Jung's avatar
Ralf Jung committed
566
Lemma timeless_eq {A : ofeT} (a b : A) : Timeless a  a  b  a  b.
567
568
569
570
571
Proof.
  unseal=> ?. apply (anti_symm ()); split=> n x ?; by apply (timeless_iff n).
Qed.

(* Option *)
572
Lemma option_equivI {A : ofeT} (mx my : option A) :
573
574
575
576
577
578
579
580
581
582
  mx  my  match mx, my with
             | Some x, Some y => x  y | None, None => True | _, _ => False
             end.
Proof.
  unseal. do 2 split. by destruct 1. by destruct mx, my; try constructor.
Qed.
Lemma option_validI {A : cmraT} (mx : option A) :
   mx  match mx with Some x =>  x | None => True end.
Proof. unseal. by destruct mx. Qed.

583
584
(* Contractive functions *)
Lemma contractiveI {A B : ofeT} (f : A  B) :
585
  Contractive f  ( a b,  (a  b)  f a  f b).
586
587
Proof.
  split; unseal; intros Hf.
588
589
  - intros a b; split=> n x _; apply Hf.
  - intros i a b; eapply Hf, ucmra_unit_validN.
590
591
Qed.

592
593
594
(* Functions *)
Lemma cofe_funC_equivI {A B} (f g : A -c> B) : f  g   x, f x  g x.
Proof. by unseal. Qed.
595
Lemma cofe_morC_equivI {A B : ofeT} (f g : A -n> B) : f  g   x, f x  g x.
596
597
Proof. by unseal. Qed.
End primitive.
598
End uPred.