lang.v 21.9 KB
Newer Older
1
From program_logic Require Export language.
2
From prelude Require Export strings.
3
From prelude Require Import gmap.
4

5
Module heap_lang.
6
7
Open Scope Z_scope.

8
(** Expressions and vals. *)
9
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
10

11
Inductive base_lit : Set :=
12
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit.
13
Inductive un_op : Set :=
14
  | NegOp | MinusUnOp.
15
16
17
Inductive bin_op : Set :=
  | PlusOp | MinusOp | LeOp | LtOp | EqOp.

18
19
Inductive binder := BAnon | BNamed : string  binder.

20
21
22
Definition cons_binder (mx : binder) (X : list string) : list string :=
  match mx with BAnon => X | BNamed x => x :: X end.
Infix ":b:" := cons_binder (at level 60, right associativity).
23
Delimit Scope binder_scope with binder.
24
Bind Scope binder_scope with binder.
25
26
27
28
29
30
31
32
33
34
Instance binder_dec_eq (x1 x2 : binder) : Decision (x1 = x2).
Proof. solve_decision. Defined.

Instance set_unfold_cons_binder x mx X P :
  SetUnfold (x  X) P  SetUnfold (x  mx :b: X) (BNamed x = mx  P).
Proof.
  constructor. rewrite -(set_unfold (x  X) P).
  destruct mx; rewrite /= ?elem_of_cons; naive_solver.
Qed.

Ralf Jung's avatar
Ralf Jung committed
35
36
37
38
39
40
(** A typeclass for whether a variable is bound in a given
   context. Making this a typeclass means we can use tpeclass search
   to program solving these constraints, so this becomes extensible.
   Also, since typeclass search runs *after* unification, Coq has already
   inferred the X for us; if we were to go for embedded proof terms ot
   tactics, Coq would do things in the wrong order. *)
41
42
Class VarBound (x : string) (X : list string) :=
  var_bound : bool_decide (x  X).
Ralf Jung's avatar
Ralf Jung committed
43
44
(* FIXME shouldn't this have this Hint to only perfom search of x and X
   are not evars? *)
45
46
47
48
49
50
51
52
53
Hint Extern 0 (VarBound _ _) => vm_compute; exact I : typeclass_instances. 

Instance var_bound_proof_irrel x X : ProofIrrel (VarBound x X).
Proof. rewrite /VarBound. apply _. Qed.
Instance set_unfold_var_bound x X P :
  SetUnfold (x  X) P  SetUnfold (VarBound x X) P.
Proof.
  constructor. by rewrite /VarBound bool_decide_spec (set_unfold (x  X) P).
Qed.
54

55
Inductive expr (X : list string) :=
56
  (* Base lambda calculus *)
Ralf Jung's avatar
Ralf Jung committed
57
58
59
60
61
62
63
      (* Var is the only place where the terms contain a proof. The fact that they
       contain a proof at all is suboptimal, since this means two seeminlgy
       convertible terms could differ in their proofs. However, this also has
       some advantages:
       * We can make the [X] an index, so we can do non-dependent match.
       * In expr_weaken, we can push the proof all the way into Var, making
         sure that proofs never block computation. *)
64
65
66
  | Var (x : string) `{VarBound x X}
  | Rec (f x : binder) (e : expr (f :b: x :b: X))
  | App (e1 e2 : expr X)
67
68
  (* Base types and their operations *)
  | Lit (l : base_lit)
69
70
71
  | UnOp (op : un_op) (e : expr X)
  | BinOp (op : bin_op) (e1 e2 : expr X)
  | If (e0 e1 e2 : expr X)
72
  (* Products *)
73
74
75
  | Pair (e1 e2 : expr X)
  | Fst (e : expr X)
  | Snd (e : expr X)
76
  (* Sums *)
77
78
79
  | InjL (e : expr X)
  | InjR (e : expr X)
  | Case (e0 : expr X) (e1 : expr X) (e2 : expr X)
80
  (* Concurrency *)
81
  | Fork (e : expr X)
82
83
  (* Heap *)
  | Loc (l : loc)
84
85
86
87
  | Alloc (e : expr X)
  | Load (e : expr X)
  | Store (e1 : expr X) (e2 : expr X)
  | Cas (e0 : expr X) (e1 : expr X) (e2 : expr X).
Ralf Jung's avatar
Ralf Jung committed
88

89
90
Bind Scope expr_scope with expr.
Delimit Scope expr_scope with E.
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
Arguments Var {_} _ {_}.
Arguments Rec {_} _ _ _%E.
Arguments App {_} _%E _%E.
Arguments Lit {_} _.
Arguments UnOp {_} _ _%E.
Arguments BinOp {_} _ _%E _%E.
Arguments If {_} _%E _%E _%E.
Arguments Pair {_} _%E _%E.
Arguments Fst {_} _%E.
Arguments Snd {_} _%E.
Arguments InjL {_} _%E.
Arguments InjR {_} _%E.
Arguments Case {_} _%E _%E _%E.
Arguments Fork {_} _%E.
Arguments Loc {_} _.
Arguments Alloc {_} _%E.
Arguments Load {_} _%E.
Arguments Store {_} _%E _%E.
Arguments Cas {_} _%E _%E _%E.
110

111
Inductive val :=
112
  | RecV (f x : binder) (e : expr (f :b: x :b: []))
113
  | LitV (l : base_lit)
114
115
116
117
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
118

119
120
Bind Scope val_scope with val.
Delimit Scope val_scope with V.
121
122
123
Arguments PairV _%V _%V.
Arguments InjLV _%V.
Arguments InjRV _%V.
124

125
Definition signal : val := RecV BAnon (BNamed "x") (Store (Var "x") (Lit (LitInt 1))).
126

127
Fixpoint of_val (v : val) : expr [] :=
Ralf Jung's avatar
Ralf Jung committed
128
  match v with
129
  | RecV f x e => Rec f x e
130
  | LitV l => Lit l
131
132
133
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
134
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
135
  end.
136
137

Fixpoint to_val (e : expr []) : option val :=
138
  match e with
139
  | Rec f x e => Some (RecV f x e)
140
  | Lit l => Some (LitV l)
141
142
143
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
144
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
145
  | _ => None
146
147
  end.

148
149
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
150

151
(** Evaluation contexts *)
152
Inductive ectx_item :=
153
  | AppLCtx (e2 : expr [])
154
  | AppRCtx (v1 : val)
155
  | UnOpCtx (op : un_op)
156
  | BinOpLCtx (op : bin_op) (e2 : expr [])
157
  | BinOpRCtx (op : bin_op) (v1 : val)
158
159
  | IfCtx (e1 e2 : expr [])
  | PairLCtx (e2 : expr [])
160
161
162
163
164
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
165
  | CaseCtx (e1 : expr []) (e2 : expr [])
166
167
  | AllocCtx
  | LoadCtx
168
  | StoreLCtx (e2 : expr [])
169
  | StoreRCtx (v1 : val)
170
171
  | CasLCtx (e1 : expr [])  (e2 : expr [])
  | CasMCtx (v0 : val) (e2 : expr [])
172
  | CasRCtx (v0 : val) (v1 : val).
173

174
Notation ectx := (list ectx_item).
175

176
Definition fill_item (Ki : ectx_item) (e : expr []) : expr [] :=
177
178
179
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
180
181
182
183
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
184
185
186
187
188
189
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
190
  | CaseCtx e1 e2 => Case e e1 e2
191
192
193
194
195
196
197
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
198
  end.
199
Definition fill (K : ectx) (e : expr []) : expr [] := fold_right fill_item e K.
Ralf Jung's avatar
Ralf Jung committed
200

201
(** Substitution *)
202
(** We have [subst' e BAnon v = e] to deal with anonymous binders *)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
Lemma wexpr_rec_prf {X Y} (H : X `included` Y) {f x} :
  f :b: x :b: X `included` f :b: x :b: Y.
Proof. set_solver. Qed.

Program Fixpoint wexpr {X Y} (H : X `included` Y) (e : expr X) : expr Y :=
  match e return expr Y with
  | Var x _ => @Var _ x _
  | Rec f x e => Rec f x (wexpr (wexpr_rec_prf H) e)
  | App e1 e2 => App (wexpr H e1) (wexpr H e2)
  | Lit l => Lit l
  | UnOp op e => UnOp op (wexpr H e)
  | BinOp op e1 e2 => BinOp op (wexpr H e1) (wexpr H e2)
  | If e0 e1 e2 => If (wexpr H e0) (wexpr H e1) (wexpr H e2)
  | Pair e1 e2 => Pair (wexpr H e1) (wexpr H e2)
  | Fst e => Fst (wexpr H e)
  | Snd e => Snd (wexpr H e)
  | InjL e => InjL (wexpr H e)
  | InjR e => InjR (wexpr H e)
  | Case e0 e1 e2 => Case (wexpr H e0) (wexpr H e1) (wexpr H e2)
  | Fork e => Fork (wexpr H e)
  | Loc l => Loc l
  | Alloc e => Alloc (wexpr H e)
  | Load  e => Load (wexpr H e)
  | Store e1 e2 => Store (wexpr H e1) (wexpr H e2)
  | Cas e0 e1 e2 => Cas (wexpr H e0) (wexpr H e1) (wexpr H e2)
  end.
Solve Obligations with set_solver.

Definition of_val' {X} (v : val) : expr X := wexpr (included_nil _) (of_val v).

Lemma wsubst_rec_true_prf {X Y x} (H : X `included` x :: Y) {f y}
    (Hfy :BNamed x  f  BNamed x  y) :
  f :b: y :b: X `included` x :: f :b: y :b: Y.
Proof. set_solver. Qed.
Lemma wsubst_rec_false_prf {X Y x} (H : X `included` x :: Y) {f y}
    (Hfy : ¬(BNamed x  f  BNamed x  y)) :
  f :b: y :b: X `included` f :b: y :b: Y.
Proof. move: Hfy=>/not_and_l [/dec_stable|/dec_stable]; set_solver. Qed.

Program Fixpoint wsubst {X Y} (x : string) (es : expr [])
    (H : X `included` x :: Y) (e : expr X)  : expr Y :=
  match e return expr Y with
  | Var y _ => if decide (x = y) then wexpr _ es else @Var _ y _
246
  | Rec f y e =>
247
248
249
250
251
     Rec f y $ match decide (BNamed x  f  BNamed x  y) return _ with
               | left Hfy => wsubst x es (wsubst_rec_true_prf H Hfy) e
               | right Hfy => wexpr (wsubst_rec_false_prf H Hfy) e
               end
  | App e1 e2 => App (wsubst x es H e1) (wsubst x es H e2)
252
  | Lit l => Lit l
253
254
255
256
257
258
259
260
  | UnOp op e => UnOp op (wsubst x es H e)
  | BinOp op e1 e2 => BinOp op (wsubst x es H e1) (wsubst x es H e2)
  | If e0 e1 e2 => If (wsubst x es H e0) (wsubst x es H e1) (wsubst x es H e2)
  | Pair e1 e2 => Pair (wsubst x es H e1) (wsubst x es H e2)
  | Fst e => Fst (wsubst x es H e)
  | Snd e => Snd (wsubst x es H e)
  | InjL e => InjL (wsubst x es H e)
  | InjR e => InjR (wsubst x es H e)
261
  | Case e0 e1 e2 =>
262
263
     Case (wsubst x es H e0) (wsubst x es H e1) (wsubst x es H e2)
  | Fork e => Fork (wsubst x es H e)
264
  | Loc l => Loc l
265
266
267
268
  | Alloc e => Alloc (wsubst x es H e)
  | Load e => Load (wsubst x es H e)
  | Store e1 e2 => Store (wsubst x es H e1) (wsubst x es H e2)
  | Cas e0 e1 e2 => Cas (wsubst x es H e0) (wsubst x es H e1) (wsubst x es H e2)
269
  end.
270
271
272
273
274
275
Solve Obligations with set_solver.

Definition subst {X} (x : string) (es : expr []) (e : expr (x :: X)) : expr X :=
  wsubst x es (λ z, id) e.
Definition subst' {X} (mx : binder) (es : expr []) : expr (mx :b: X)  expr X :=
  match mx with BNamed x => subst x es | BAnon => id end.
276

277
(** The stepping relation *)
278
279
Definition un_op_eval (op : un_op) (l : base_lit) : option base_lit :=
  match op, l with
280
  | NegOp, LitBool b => Some (LitBool (negb b))
281
  | MinusUnOp, LitInt n => Some (LitInt (- n))
282
283
284
285
286
  | _, _ => None
  end.

Definition bin_op_eval (op : bin_op) (l1 l2 : base_lit) : option base_lit :=
  match op, l1, l2 with
287
288
289
290
291
  | PlusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 + n2)
  | MinusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 - n2)
  | LeOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1  n2)
  | LtOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 < n2)
  | EqOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 = n2)
292
293
294
  | _, _, _ => None
  end.

295
296
Inductive head_step : expr []  state  expr []  state  option (expr [])  Prop :=
  | BetaS f x e1 e2 v2 e' σ :
297
     to_val e2 = Some v2 
298
299
     e' = subst' x (of_val v2) (subst' f (Rec f x e1) e1) 
     head_step (App (Rec f x e1) e2) σ e' σ None
300
  | UnOpS op l l' σ :
301
302
     un_op_eval op l = Some l'  
     head_step (UnOp op (Lit l)) σ (Lit l') σ None
303
  | BinOpS op l1 l2 l' σ :
304
305
306
     bin_op_eval op l1 l2 = Some l'  
     head_step (BinOp op (Lit l1) (Lit l2)) σ (Lit l') σ None
  | IfTrueS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
307
     head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ None
308
  | IfFalseS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
309
     head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ None
310
311
312
313
314
315
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
316
  | CaseLS e0 v0 e1 e2 σ :
317
     to_val e0 = Some v0 
318
319
     head_step (Case (InjL e0) e1 e2) σ (App e1 e0) σ None
  | CaseRS e0 v0 e1 e2 σ :
320
     to_val e0 = Some v0 
321
     head_step (Case (InjR e0) e1 e2) σ (App e2 e0) σ None
322
  | ForkS e σ:
323
     head_step (Fork e) σ (Lit LitUnit) σ (Some e)
324
325
326
327
328
329
330
331
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
332
     head_step (Store (Loc l) e) σ (Lit LitUnit) (<[l:=v]>σ) None
333
334
335
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
Ralf Jung's avatar
Ralf Jung committed
336
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool false) σ None
337
338
339
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
Ralf Jung's avatar
Ralf Jung committed
340
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
341

342
(** Atomic expressions *)
343
Definition atomic (e: expr []) : Prop :=
344
345
346
347
348
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
Ralf Jung's avatar
Ralf Jung committed
349
350
  (* Make "skip" atomic *)
  | App (Rec _ _ (Lit _)) (Lit _) => True
351
352
  | _ => False
  end.
353

354
355
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
356
357
Inductive prim_step (e1 : expr []) (σ1 : state)
    (e2 : expr []) (σ2: state) (ef: option (expr [])) : Prop :=
358
  Ectx_step K e1' e2' :
359
360
361
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
(** Substitution *)
Lemma var_proof_irrel X x H1 H2 : @Var X x H1 = @Var X x H2.
Proof. f_equal. by apply (proof_irrel _). Qed.

Lemma wexpr_id X (H : X `included` X) e : wexpr H e = e.
Proof. induction e; f_equal/=; auto. by apply (proof_irrel _). Qed.
Lemma wexpr_proof_irrel X Y (H1 H2 : X `included` Y) e : wexpr H1 e = wexpr H2 e.
Proof.
  revert Y H1 H2; induction e; simpl; auto using var_proof_irrel with f_equal.
Qed.
Lemma wexpr_wexpr X Y Z (H1 : X `included` Y) (H2 : Y `included` Z) H3 e :
  wexpr H2 (wexpr H1 e) = wexpr H3 e.
Proof.
  revert Y Z H1 H2 H3.
  induction e; simpl; auto using var_proof_irrel with f_equal.
Qed.
Lemma wexpr_wexpr' X Y Z (H1 : X `included` Y) (H2 : Y `included` Z) e :
  wexpr H2 (wexpr H1 e) = wexpr (transitivity H1 H2) e.
Proof. apply wexpr_wexpr. Qed.

Lemma wsubst_proof_irrel X Y x es (H1 H2 : X `included` x :: Y) e :
  wsubst x es H1 e = wsubst x es H2 e.
Proof.
  revert Y H1 H2; induction e; simpl; intros; repeat case_decide;
    auto using var_proof_irrel, wexpr_proof_irrel with f_equal.
Qed.
Lemma wexpr_wsubst X Y Z x es (H1: X `included` x::Y) (H2: Y `included` Z) H3 e:
  wexpr H2 (wsubst x es H1 e) = wsubst x es H3 e.
Proof.
  revert Y Z H1 H2 H3.
  induction e; intros; repeat (case_decide || simplify_eq/=);
    auto using var_proof_irrel, wexpr_wexpr with f_equal.
Qed.
Lemma wsubst_wexpr X Y Z x es (H1: X `included` Y) (H2: Y `included` x::Z) H3 e:
  wsubst x es H2 (wexpr H1 e) = wsubst x es H3 e.
Proof.
  revert Y Z H1 H2 H3.
  induction e; intros; repeat (case_decide || simplify_eq/=);
    auto using var_proof_irrel, wexpr_wexpr with f_equal.
Qed.
Lemma wsubst_wexpr' X Y Z x es (H1: X `included` Y) (H2: Y `included` x::Z) e:
  wsubst x es H2 (wexpr H1 e) = wsubst x es (transitivity H1 H2) e.
Proof. apply wsubst_wexpr. Qed.

Lemma wsubst_closed X Y x es (H1 : X `included` x :: Y) H2 (e : expr X) :
  x  X  wsubst x es H1 e = wexpr H2 e.
Proof.
  revert Y H1 H2.
  induction e; intros; repeat (case_decide || simplify_eq/=);
    auto using var_proof_irrel, wexpr_proof_irrel with f_equal set_solver.
  exfalso; set_solver.
Qed.
Lemma wsubst_closed_nil x es H (e : expr []) : wsubst x es H e = e.
Proof.
  rewrite -{2}(wexpr_id _ (reflexivity []) e).
  apply wsubst_closed, not_elem_of_nil.
Qed.

420
421
(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
422
Proof. by induction v; simplify_option_eq. Qed.
423

424
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
425
Proof.
426
427
428
429
430
431
432
  revert e v. cut ( X (e : expr X) (H : X = ) v,
    to_val (eq_rect _ expr e _ H) = Some v  of_val v = eq_rect _ expr e _ H).
  { intros help e v. apply (help  e eq_refl). }
  intros X e; induction e; intros HX ??; simplify_option_eq;
    repeat match goal with
    | IH :  _ :  = , _ |- _ => specialize (IH eq_refl); simpl in IH
    end; auto with f_equal.
433
Qed.
434

435
436
Instance: Inj (=) (=) of_val.
Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
437

438
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
439
Proof. destruct Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
440

441
Instance ectx_fill_inj K : Inj (=) (=) (fill K).
442
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
443

444
445
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
446

447
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
448
Proof.
449
  intros [v' Hv']; revert v' Hv'.
450
  induction K as [|[]]; intros; simplify_option_eq; eauto.
451
Qed.
452

453
454
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
455

456
Lemma val_head_stuck e1 σ1 e2 σ2 ef :
457
458
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
459

460
461
Lemma val_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, val_head_stuck. Qed.
462

463
464
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
465

466
467
Lemma atomic_fill_item Ki e : atomic (fill_item Ki e)  is_Some (to_val e).
Proof.
468
  intros. destruct Ki; simplify_eq/=; destruct_and?;
469
470
471
    repeat (case_match || contradiction); eauto.
Qed.

472
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
473
Proof.
474
475
  destruct K as [|Ki K]; [done|].
  rewrite eq_None_not_Some=> /= ? []; eauto using atomic_fill_item, fill_val.
476
Qed.
477

478
479
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Ralf Jung's avatar
Ralf Jung committed
480
Proof.
481
  destruct 2; simpl; rewrite ?to_of_val; try by eauto. subst.
482
  unfold subst'; repeat (case_match || contradiction || simplify_eq/=); eauto.
Ralf Jung's avatar
Ralf Jung committed
483
Qed.
484

485
486
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
487
Proof.
488
  intros Hatomic [K e1' e2' -> -> Hstep].
489
  assert (K = []) as -> by eauto 10 using atomic_fill, val_head_stuck.
490
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
491
Qed.
492

493
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
494
  head_step (fill_item Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
495
Proof. destruct Ki; inversion_clear 1; simplify_option_eq; eauto. Qed.
496

497
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
498
  to_val e1 = None  to_val e2 = None 
499
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
500
Proof.
501
  destruct Ki1, Ki2; intros; try discriminate; simplify_eq/=;
502
    repeat match goal with
503
504
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
505
Qed.
506

507
508
509
510
511
512
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
513
Proof.
514
515
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
516
  destruct K' as [|Ki' K']; simplify_eq/=.
Ralf Jung's avatar
Ralf Jung committed
517
  { exfalso; apply (eq_None_not_Some (to_val (fill K e1)));
518
519
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
520
  eauto using fill_item_no_val_inj, val_head_stuck, fill_not_val.
521
Qed.
522

523
524
525
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
526
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.
527

528
529
530
531
532
533
534
(** Equality stuff *)
Instance base_lit_dec_eq (l1 l2 : base_lit) : Decision (l1 = l2).
Proof. solve_decision. Defined.
Instance un_op_dec_eq (op1 op2 : un_op) : Decision (op1 = op2).
Proof. solve_decision. Defined.
Instance bin_op_dec_eq (op1 op2 : bin_op) : Decision (op1 = op2).
Proof. solve_decision. Defined.
535

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
Fixpoint expr_beq {X Y} (e : expr X) (e' : expr Y) : bool :=
  match e, e' with
  | Var x _, Var x' _ => bool_decide (x = x')
  | Rec f x e, Rec f' x' e' =>
     bool_decide (f = f') && bool_decide (x = x') && expr_beq e e'
  | App e1 e2, App e1' e2' | Pair e1 e2, Pair e1' e2' |
    Store e1 e2, Store e1' e2' => expr_beq e1 e1' && expr_beq e2 e2'
  | Lit l, Lit l' => bool_decide (l = l')
  | UnOp op e, UnOp op' e' => bool_decide (op = op') && expr_beq e e'
  | BinOp op e1 e2, BinOp op' e1' e2' =>
     bool_decide (op = op') && expr_beq e1 e1' && expr_beq e2 e2'
  | If e0 e1 e2, If e0' e1' e2' | Case e0 e1 e2, Case e0' e1' e2' |
    Cas e0 e1 e2, Cas e0' e1' e2' =>
     expr_beq e0 e0' && expr_beq e1 e1' && expr_beq e2 e2'
  | Fst e, Fst e' | Snd e, Snd e' | InjL e, InjL e' | InjR e, InjR e' |
    Fork e, Fork e' | Alloc e, Alloc e' | Load e, Load e' => expr_beq e e'
  | Loc l, Loc l' => bool_decide (l = l')
  | _, _ => false
554
  end.
555
Lemma expr_beq_correct {X} (e1 e2 : expr X) : expr_beq e1 e2  e1 = e2.
556
Proof.
557
558
559
560
  split.
  * revert e2; induction e1; intros [] * ?; simpl in *;
      destruct_and?; subst; repeat f_equal/=; auto; try apply proof_irrel.
  * intros ->. induction e2; naive_solver.
561
Qed.
562
Instance expr_dec_eq {X} (e1 e2 : expr X) : Decision (e1 = e2).
563
Proof.
564
565
566
 refine (cast_if (decide (expr_beq e1 e2))); by rewrite -expr_beq_correct.
Defined.
Instance val_dec_eq (v1 v2 : val) : Decision (v1 = v2).
567
Proof.
568
569
 refine (cast_if (decide (of_val v1 = of_val v2))); abstract naive_solver.
Defined.
570
571
572
573
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
574
  expr := heap_lang.expr []; val := heap_lang.val; state := heap_lang.state;
575
576
577
578
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
579
  heap_lang.val_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
580

581
Global Instance heap_lang_ctx K : LanguageCtx heap_lang (heap_lang.fill K).
582
Proof.
583
  split.
584
585
  - eauto using heap_lang.fill_not_val.
  - intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
586
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
587
  - intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
588
589
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
590
    rewrite heap_lang.fill_app in Heq1; apply (inj _) in Heq1.
Ralf Jung's avatar
Ralf Jung committed
591
    exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
592
    econstructor; eauto.
593
Qed.
594
595
596

Global Instance heap_lang_ctx_item Ki :
  LanguageCtx heap_lang (heap_lang.fill_item Ki).
597
Proof. change (LanguageCtx heap_lang (heap_lang.fill [Ki])). apply _. Qed.