lang.v 13.4 KB
Newer Older
1
2
3
From program_logic Require Export language.
From prelude Require Export strings.
From prelude Require Import gmap.
4

5
Module heap_lang.
6
7
Open Scope Z_scope.

8
(** Expressions and vals. *)
9
Definition loc := positive. (* Really, any countable type. *)
Ralf Jung's avatar
Ralf Jung committed
10

11
Inductive base_lit : Set :=
12
  | LitInt (n : Z) | LitBool (b : bool) | LitUnit.
13
Inductive un_op : Set :=
14
  | NegOp | MinusUnOp.
15
16
17
Inductive bin_op : Set :=
  | PlusOp | MinusOp | LeOp | LtOp | EqOp.

Ralf Jung's avatar
Ralf Jung committed
18
Inductive expr :=
19
  (* Base lambda calculus *)
20
21
  | Var (x : string)
  | Rec (f x : string) (e : expr)
22
  | App (e1 e2 : expr)
23
24
25
26
27
  (* Base types and their operations *)
  | Lit (l : base_lit)
  | UnOp (op : un_op) (e : expr)
  | BinOp (op : bin_op) (e1 e2 : expr)
  | If (e0 e1 e2 : expr)
28
29
30
31
32
33
34
  (* Products *)
  | Pair (e1 e2 : expr)
  | Fst (e : expr)
  | Snd (e : expr)
  (* Sums *)
  | InjL (e : expr)
  | InjR (e : expr)
35
  | Case (e0 : expr) (x1 : string) (e1 : expr) (x2 : string) (e2 : expr)
36
37
38
39
40
41
42
43
  (* Concurrency *)
  | Fork (e : expr)
  (* Heap *)
  | Loc (l : loc)
  | Alloc (e : expr)
  | Load (e : expr)
  | Store (e1 : expr) (e2 : expr)
  | Cas (e0 : expr) (e1 : expr) (e2 : expr).
Ralf Jung's avatar
Ralf Jung committed
44

45
Inductive val :=
46
  | RecV (f x : string) (e : expr) (* e should be closed *)
47
  | LitV (l : base_lit)
48
49
50
51
  | PairV (v1 v2 : val)
  | InjLV (v : val)
  | InjRV (v : val)
  | LocV (l : loc).
Ralf Jung's avatar
Ralf Jung committed
52

53
Global Instance base_lit_dec_eq (l1 l2 : base_lit) : Decision (l1 = l2).
54
Proof. solve_decision. Defined.
55
Global Instance un_op_dec_eq (op1 op2 : un_op) : Decision (op1 = op2).
56
Proof. solve_decision. Defined.
57
Global Instance bin_op_dec_eq (op1 op2 : bin_op) : Decision (op1 = op2).
58
Proof. solve_decision. Defined.
59
Global Instance expr_dec_eq (e1 e2 : expr) : Decision (e1 = e2).
60
Proof. solve_decision. Defined.
61
Global Instance val_dec_eq (v1 v2 : val) : Decision (v1 = v2).
62
Proof. solve_decision. Defined.
63

64
Delimit Scope lang_scope with L.
65
Bind Scope lang_scope with expr val base_lit.
66

67
Fixpoint of_val (v : val) : expr :=
Ralf Jung's avatar
Ralf Jung committed
68
  match v with
69
  | RecV f x e => Rec f x e
70
  | LitV l => Lit l
71
72
73
  | PairV v1 v2 => Pair (of_val v1) (of_val v2)
  | InjLV v => InjL (of_val v)
  | InjRV v => InjR (of_val v)
74
  | LocV l => Loc l
Ralf Jung's avatar
Ralf Jung committed
75
  end.
76
Fixpoint to_val (e : expr) : option val :=
77
  match e with
78
  | Rec f x e => Some (RecV f x e)
79
  | Lit l => Some (LitV l)
80
81
82
  | Pair e1 e2 => v1  to_val e1; v2  to_val e2; Some (PairV v1 v2)
  | InjL e => InjLV <$> to_val e
  | InjR e => InjRV <$> to_val e
83
  | Loc l => Some (LocV l)
Ralf Jung's avatar
Ralf Jung committed
84
  | _ => None
85
86
  end.

87
88
(** The state: heaps of vals. *)
Definition state := gmap loc val.
Ralf Jung's avatar
Ralf Jung committed
89

90
(** Evaluation contexts *)
91
92
93
Inductive ectx_item :=
  | AppLCtx (e2 : expr)
  | AppRCtx (v1 : val)
94
95
96
97
  | UnOpCtx (op : un_op)
  | BinOpLCtx (op : bin_op) (e2 : expr)
  | BinOpRCtx (op : bin_op) (v1 : val)
  | IfCtx (e1 e2 : expr)
98
99
100
101
102
103
  | PairLCtx (e2 : expr)
  | PairRCtx (v1 : val)
  | FstCtx
  | SndCtx
  | InjLCtx
  | InjRCtx
104
  | CaseCtx (x1 : string) (e1 : expr) (x2 : string) (e2 : expr)
105
106
107
108
109
110
111
  | AllocCtx
  | LoadCtx
  | StoreLCtx (e2 : expr)
  | StoreRCtx (v1 : val)
  | CasLCtx (e1 : expr)  (e2 : expr)
  | CasMCtx (v0 : val) (e2 : expr)
  | CasRCtx (v0 : val) (v1 : val).
112

113
Notation ectx := (list ectx_item).
114

115
Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
116
117
118
  match Ki with
  | AppLCtx e2 => App e e2
  | AppRCtx v1 => App (of_val v1) e
119
120
121
122
  | UnOpCtx op => UnOp op e
  | BinOpLCtx op e2 => BinOp op e e2
  | BinOpRCtx op v1 => BinOp op (of_val v1) e
  | IfCtx e1 e2 => If e e1 e2
123
124
125
126
127
128
  | PairLCtx e2 => Pair e e2
  | PairRCtx v1 => Pair (of_val v1) e
  | FstCtx => Fst e
  | SndCtx => Snd e
  | InjLCtx => InjL e
  | InjRCtx => InjR e
129
  | CaseCtx x1 e1 x2 e2 => Case e x1 e1 x2 e2
130
131
132
133
134
135
136
  | AllocCtx => Alloc e
  | LoadCtx => Load e
  | StoreLCtx e2 => Store e e2
  | StoreRCtx v1 => Store (of_val v1) e
  | CasLCtx e1 e2 => Cas e e1 e2
  | CasMCtx v0 e2 => Cas (of_val v0) e e2
  | CasRCtx v0 v1 => Cas (of_val v0) (of_val v1) e
Ralf Jung's avatar
Ralf Jung committed
137
  end.
138
Definition fill (K : ectx) (e : expr) : expr := fold_right fill_item e K.
Ralf Jung's avatar
Ralf Jung committed
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
(** Substitution *)
(** We have [subst e "" v = e] to deal with anonymous binders *)
Fixpoint subst (e : expr) (x : string) (v : val) : expr :=
  match e with
  | Var y => if decide (x = y  x  "") then of_val v else Var y
  | Rec f y e => Rec f y (if decide (x  f  x  y) then subst e x v else e)
  | App e1 e2 => App (subst e1 x v) (subst e2 x v)
  | Lit l => Lit l
  | UnOp op e => UnOp op (subst e x v)
  | BinOp op e1 e2 => BinOp op (subst e1 x v) (subst e2 x v)
  | If e0 e1 e2 => If (subst e0 x v) (subst e1 x v) (subst e2 x v)
  | Pair e1 e2 => Pair (subst e1 x v) (subst e2 x v)
  | Fst e => Fst (subst e x v)
  | Snd e => Snd (subst e x v)
  | InjL e => InjL (subst e x v)
  | InjR e => InjR (subst e x v)
  | Case e0 x1 e1 x2 e2 =>
     Case (subst e0 x v)
       x1 (if decide (x  x1) then subst e1 x v else e1)
       x2 (if decide (x  x2) then subst e2 x v else e2)
  | Fork e => Fork (subst e x v)
  | Loc l => Loc l
  | Alloc e => Alloc (subst e x v)
  | Load e => Load (subst e x v)
  | Store e1 e2 => Store (subst e1 x v) (subst e2 x v)
  | Cas e0 e1 e2 => Cas (subst e0 x v) (subst e1 x v) (subst e2 x v)
  end.

168
(** The stepping relation *)
169
170
Definition un_op_eval (op : un_op) (l : base_lit) : option base_lit :=
  match op, l with
171
  | NegOp, LitBool b => Some (LitBool (negb b))
172
  | MinusUnOp, LitInt n => Some (LitInt (- n))
173
174
175
176
177
  | _, _ => None
  end.

Definition bin_op_eval (op : bin_op) (l1 l2 : base_lit) : option base_lit :=
  match op, l1, l2 with
178
179
180
181
182
  | PlusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 + n2)
  | MinusOp, LitInt n1, LitInt n2 => Some $ LitInt (n1 - n2)
  | LeOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1  n2)
  | LtOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 < n2)
  | EqOp, LitInt n1, LitInt n2 => Some $ LitBool $ bool_decide (n1 = n2)
183
184
185
  | _, _, _ => None
  end.

186
Inductive head_step : expr  state  expr  state  option expr  Prop :=
187
  | BetaS f x e1 e2 v2 σ :
188
     to_val e2 = Some v2 
189
190
191
     head_step (App (Rec f x e1) e2) σ
       (subst (subst e1 f (RecV f x e1)) x v2) σ None
  | UnOpS op l l' σ :
192
193
     un_op_eval op l = Some l'  
     head_step (UnOp op (Lit l)) σ (Lit l') σ None
194
  | BinOpS op l1 l2 l' σ :
195
196
197
     bin_op_eval op l1 l2 = Some l'  
     head_step (BinOp op (Lit l1) (Lit l2)) σ (Lit l') σ None
  | IfTrueS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
198
     head_step (If (Lit $ LitBool true) e1 e2) σ e1 σ None
199
  | IfFalseS e1 e2 σ :
Ralf Jung's avatar
Ralf Jung committed
200
     head_step (If (Lit $ LitBool false) e1 e2) σ e2 σ None
201
202
203
204
205
206
  | FstS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Fst (Pair e1 e2)) σ e1 σ None
  | SndS e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     head_step (Snd (Pair e1 e2)) σ e2 σ None
207
  | CaseLS e0 v0 x1 e1 x2 e2 σ :
208
     to_val e0 = Some v0 
209
210
     head_step (Case (InjL e0) x1 e1 x2 e2) σ (subst e1 x1 v0) σ None
  | CaseRS e0 v0 x1 e1 x2 e2 σ :
211
     to_val e0 = Some v0 
212
     head_step (Case (InjR e0) x1 e1 x2 e2) σ (subst e2 x2 v0) σ None
213
  | ForkS e σ:
214
     head_step (Fork e) σ (Lit LitUnit) σ (Some e)
215
216
217
218
219
220
221
222
  | AllocS e v σ l :
     to_val e = Some v  σ !! l = None 
     head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None
  | LoadS l v σ :
     σ !! l = Some v 
     head_step (Load (Loc l)) σ (of_val v) σ None
  | StoreS l e v σ :
     to_val e = Some v  is_Some (σ !! l) 
223
     head_step (Store (Loc l) e) σ (Lit LitUnit) (<[l:=v]>σ) None
224
225
226
  | CasFailS l e1 v1 e2 v2 vl σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some vl  vl  v1 
Ralf Jung's avatar
Ralf Jung committed
227
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool false) σ None
228
229
230
  | CasSucS l e1 v1 e2 v2 σ :
     to_val e1 = Some v1  to_val e2 = Some v2 
     σ !! l = Some v1 
Ralf Jung's avatar
Ralf Jung committed
231
     head_step (Cas (Loc l) e1 e2) σ (Lit $ LitBool true) (<[l:=v2]>σ) None.
Ralf Jung's avatar
Ralf Jung committed
232

233
(** Atomic expressions *)
234
Definition atomic (e: expr) : Prop :=
235
236
237
238
239
  match e with
  | Alloc e => is_Some (to_val e)
  | Load e => is_Some (to_val e)
  | Store e1 e2 => is_Some (to_val e1)  is_Some (to_val e2)
  | Cas e0 e1 e2 => is_Some (to_val e0)  is_Some (to_val e1)  is_Some (to_val e2)
Ralf Jung's avatar
Ralf Jung committed
240
241
  (* Make "skip" atomic *)
  | App (Rec _ _ (Lit _)) (Lit _) => True
242
243
  | _ => False
  end.
244

245
246
247
248
(** Close reduction under evaluation contexts.
We could potentially make this a generic construction. *)
Inductive prim_step
    (e1 : expr) (σ1 : state) (e2 : expr) (σ2: state) (ef: option expr) : Prop :=
249
  Ectx_step K e1' e2' :
250
251
252
253
254
    e1 = fill K e1'  e2 = fill K e2' 
    head_step e1' σ1 e2' σ2 ef  prim_step e1 σ1 e2 σ2 ef.

(** Basic properties about the language *)
Lemma to_of_val v : to_val (of_val v) = Some v.
255
Proof. by induction v; simplify_option_eq. Qed.
256

257
Lemma of_to_val e v : to_val e = Some v  of_val v = e.
258
Proof.
259
  revert v; induction e; intros; simplify_option_eq; auto with f_equal.
260
Qed.
261

262
263
Instance: Inj (=) (=) of_val.
Proof. by intros ?? Hv; apply (inj Some); rewrite -!to_of_val Hv. Qed.
264

265
Instance fill_item_inj Ki : Inj (=) (=) (fill_item Ki).
266
Proof. destruct Ki; intros ???; simplify_eq/=; auto with f_equal. Qed.
267

268
Instance ectx_fill_inj K : Inj (=) (=) (fill K).
269
Proof. red; induction K as [|Ki K IH]; naive_solver. Qed.
270

271
272
Lemma fill_app K1 K2 e : fill (K1 ++ K2) e = fill K1 (fill K2 e).
Proof. revert e; induction K1; simpl; auto with f_equal. Qed.
273

274
Lemma fill_val K e : is_Some (to_val (fill K e))  is_Some (to_val e).
275
Proof.
276
  intros [v' Hv']; revert v' Hv'.
277
  induction K as [|[]]; intros; simplify_option_eq; eauto.
278
Qed.
279

280
281
Lemma fill_not_val K e : to_val e = None  to_val (fill K e) = None.
Proof. rewrite !eq_None_not_Some; eauto using fill_val. Qed.
282

283
284
285
Lemma values_head_stuck e1 σ1 e2 σ2 ef :
  head_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. destruct 1; naive_solver. Qed.
286

287
288
Lemma values_stuck e1 σ1 e2 σ2 ef : prim_step e1 σ1 e2 σ2 ef  to_val e1 = None.
Proof. intros [??? -> -> ?]; eauto using fill_not_val, values_head_stuck. Qed.
289

290
291
Lemma atomic_not_val e : atomic e  to_val e = None.
Proof. destruct e; naive_solver. Qed.
292

293
294
295
296
297
298
Lemma atomic_fill_item Ki e : atomic (fill_item Ki e)  is_Some (to_val e).
Proof.
  intros. destruct Ki; simplify_eq/=; destruct_conjs;
    repeat (case_match || contradiction); eauto.
Qed.

299
Lemma atomic_fill K e : atomic (fill K e)  to_val e = None  K = [].
300
Proof.
301
302
  destruct K as [|Ki K]; [done|].
  rewrite eq_None_not_Some=> /= ? []; eauto using atomic_fill_item, fill_val.
303
Qed.
304

305
306
Lemma atomic_head_step e1 σ1 e2 σ2 ef :
  atomic e1  head_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
Ralf Jung's avatar
Ralf Jung committed
307
Proof.
308
309
  destruct 2; simpl; rewrite ?to_of_val; try by eauto.
  repeat (case_match || contradiction || simplify_eq/=); eauto.
Ralf Jung's avatar
Ralf Jung committed
310
Qed.
311

312
313
Lemma atomic_step e1 σ1 e2 σ2 ef :
  atomic e1  prim_step e1 σ1 e2 σ2 ef  is_Some (to_val e2).
314
Proof.
315
316
317
  intros Hatomic [K e1' e2' -> -> Hstep].
  assert (K = []) as -> by eauto 10 using atomic_fill, values_head_stuck.
  naive_solver eauto using atomic_head_step.
Ralf Jung's avatar
Ralf Jung committed
318
Qed.
319

320
Lemma head_ctx_step_val Ki e σ1 e2 σ2 ef :
321
  head_step (fill_item Ki e) σ1 e2 σ2 ef  is_Some (to_val e).
322
Proof. destruct Ki; inversion_clear 1; simplify_option_eq; eauto. Qed.
323

324
Lemma fill_item_no_val_inj Ki1 Ki2 e1 e2 :
325
  to_val e1 = None  to_val e2 = None 
326
  fill_item Ki1 e1 = fill_item Ki2 e2  Ki1 = Ki2.
327
Proof.
328
  destruct Ki1, Ki2; intros; try discriminate; simplify_eq/=;
329
    repeat match goal with
330
331
    | H : to_val (of_val _) = None |- _ => by rewrite to_of_val in H
    end; auto.
Ralf Jung's avatar
Ralf Jung committed
332
Qed.
333

334
335
336
337
338
339
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
Lemma step_by_val K K' e1 e1' σ1 e2 σ2 ef :
  fill K e1 = fill K' e1'  to_val e1 = None  head_step e1' σ1 e2 σ2 ef 
  K `prefix_of` K'.
340
Proof.
341
342
  intros Hfill Hred Hnval; revert K' Hfill.
  induction K as [|Ki K IH]; simpl; intros K' Hfill; auto using prefix_of_nil.
343
  destruct K' as [|Ki' K']; simplify_eq/=.
Ralf Jung's avatar
Ralf Jung committed
344
  { exfalso; apply (eq_None_not_Some (to_val (fill K e1)));
345
346
      eauto using fill_not_val, head_ctx_step_val. }
  cut (Ki = Ki'); [naive_solver eauto using prefix_of_cons|].
347
  eauto using fill_item_no_val_inj, values_head_stuck, fill_not_val.
348
Qed.
349

350
351
352
Lemma alloc_fresh e v σ :
  let l := fresh (dom _ σ) in
  to_val e = Some v  head_step (Alloc e) σ (Loc l) (<[l:=v]>σ) None.
353
Proof. by intros; apply AllocS, (not_elem_of_dom (D:=gset _)), is_fresh. Qed.
354

355
356
Lemma subst_empty e v : subst e "" v = e.
Proof. induction e; simpl; repeat case_decide; intuition auto with f_equal. Qed.
357
358
359
360
361
362
363
364
365
366
End heap_lang.

(** Language *)
Program Canonical Structure heap_lang : language := {|
  expr := heap_lang.expr; val := heap_lang.val; state := heap_lang.state;
  of_val := heap_lang.of_val; to_val := heap_lang.to_val;
  atomic := heap_lang.atomic; prim_step := heap_lang.prim_step;
|}.
Solve Obligations with eauto using heap_lang.to_of_val, heap_lang.of_to_val,
  heap_lang.values_stuck, heap_lang.atomic_not_val, heap_lang.atomic_step.
367

368
Global Instance heap_lang_ctx K : LanguageCtx heap_lang (heap_lang.fill K).
369
Proof.
370
  split.
371
372
  - eauto using heap_lang.fill_not_val.
  - intros ????? [K' e1' e2' Heq1 Heq2 Hstep].
373
    by exists (K ++ K') e1' e2'; rewrite ?heap_lang.fill_app ?Heq1 ?Heq2.
374
  - intros e1 σ1 e2 σ2 ? Hnval [K'' e1'' e2'' Heq1 -> Hstep].
375
376
    destruct (heap_lang.step_by_val
      K K'' e1 e1'' σ1 e2'' σ2 ef) as [K' ->]; eauto.
377
    rewrite heap_lang.fill_app in Heq1; apply (inj _) in Heq1.
Ralf Jung's avatar
Ralf Jung committed
378
    exists (heap_lang.fill K' e2''); rewrite heap_lang.fill_app; split; auto.
379
    econstructor; eauto.
380
Qed.
381
382
383
384
385
386
387

Global Instance heap_lang_ctx_item Ki :
  LanguageCtx heap_lang (heap_lang.fill_item Ki).
Proof.
  change (LanguageCtx heap_lang (heap_lang.fill [Ki])).
  by apply _.
Qed.